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This  thesis presents a comprehensive ana lya is  and com- 

parison of the r e l a t i v e  effect8 of cascade and feedback 

compensation upon the steady-state and dynamic perfonaance 

of feedback cont ro l  systems. in par t i cu la r ,  system aensi-  

t i v i t y ,  steady-state system error and ac tua t ing  signal, log- 

modulus response, and pole-zero considerat ions are i n v e s t l -  

gated f o r  cascade compensation and various forms of feedback 

compensation. Equations r e l a t i n g  equivalent feedback and 

cascade compensators for a given uncompensated p lan t  and an  

o v e r a l l  system t r a n s f e r  function are developed. Conditions 

a r e  spec i f ied  f o r  t h e  r e a l i z a b i l i t y  of feedback compensators 

as R-C networks. Specif ic  advantages and l imi t a t ions  of the 

various modes of compensation are noted and general Ins igh t  

is provided In to  the relative s u i t a b i l i t y  of cascade and feed- 

back compensation f o r  a given system and set of performance 

spec i f i ca t ions .  
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CHAPTER 1 

INTRODUCTION 

1-1. INTRODUCTION TO COHTROL SYSTEM COMPENSATIOH 

The control systems that are investigated in this thesis 

are linear, continuous signal feedback control syatcas. Ac- 

cording to the AIEE proposed definition: 

A feedback control system is a control ayater which 
tends to maintain a prescribed relationship of one 
system variable to another by comparing functions 
of these variables and using the difference an a 
means of control.1 

The subject of control system compenaatlon c8n be intro- 

duced by considering a typical design procedure used in ar- 

riving at a control system for a given application. This 

procedure may be summarized as follows: 

1. The requirements f o r  the control system are estab- 

lished by a set of performance specifications. 

2. A basic system I s  assembled to perform the desired 

control function. This basic system w i l l  normally consist 

of the minimum amount of equipment necessary to accomplish 

the control function. 

3. The basic system is analyzed to determine If the 

performance specifications are met. 
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4. If the performance of the  basic system i r  not satis-  

factory,  addi t ional  elements am Introduced into the basic 

system t o  modify i t e  charec ts r la t ics  so that It can provide 

absolute stabi l i ty  and meet the  steady-state and transient 

perf olozance requirements . 
The elements t h a t  are Introduced i n t o  the basic system 

a re  referred t o  as a compensator o r  compensation network2 

since they compensate f o r  the undesirable charac te r i s t ics  of 

the or ig ina l  system. If the network is  introduced i n t o  the  

forward path of the  control system, i.e.,  i n  series o r  cas- 

cade w i t h  the o r ig ina l  system, th i s  i s  referred t o  as cascade 

compensation. 

around the or ig ina l  system, t h i s  i s  referred t o  a8 feedback 

compensation. 

ments such as amplifiers o r  tachometers, consis t  e n t i r e l y  

of passive components such as r e s i s t o r s  and capacitors, o r  

may be a combination of' both act ive and passive eleraents. 

If the  network is placed i n  a feedback path 

The network l tae l f  may COnSi8t of ac t ive  ele- 

1-2. THESIS OBJECTIVE 

The objective of  th la  thesia l a  t o  present a comparison 

of the r e l a t i v e  e f fec ts  of cascade compensation and feedback 

compensation upon the  steady-state and dynamic perfonmance of 

feedback control systems. The spec i f ic  performance character- 

*The cornpensation elements may I n  general be mechanical, 
hydraulic, e l e c t r i c a l ,  etc. ,  In nature;  however, th i s  thesis 
w i l l  be concerned w i t h  e l e c t r i c a l  networks when references 
a r e  made t o  specif ic  types of compensators. 



3 
istics and relationships that are investigated are the 

f ollowlng: 

1. The sensitivity of the controlled output of the 

control ay8tea to changes In the baaic plant and changes In 

the compenaation networks. 

2. The steady-state system error and steady-state actu- 

ating signal for compensated systems . 
3. The approximate log-modulus response of compensated 

sys terns. 

4. The effects of compensation on the root-locus and 

corresponding pole-zero configurations. 

The conditions for equivalency between caacade and feed- 

back compensated systems will also be investigated. 

finally, the relative advantages and disadvantage8 of the two 

modes of compensation will be presented. 

And 

1-3. RJ3SULTS OF LITERATURE REVIEW 

The subject of cascade compensation ha8 been developed 

in considerable depth in the literature and thia information 

provides the baeis of comparison f o r  feedback corpcnaatlon. 

The subject of feedback compensatlon has, f o r  the moat 

part, received only casual attention in the literature. A 

notable exception is the chapter that is devoted to feedback 

compensation in the textbook by D'AZZO and Houpls.3 However, 

? 

3John J. D'AZZO and Conatantine H. Houpie, Feedback 
Control System Analysis and Synthesis (New York: HcCfraw-kill 
Book Company, 1966) 9 Chap. 14. 
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even th i s  treatment i s  r e l a t i v e l y  s u p e r f i c i a l  when compared 

w i t h  the voluminous data that  e x i s t s  f o r  cascade compensation. 

Many of the  discussions of feedback compensation i n  the 

l i t e r a t u r e  are limited t o  t h e  spec ia l  case of tachometric 

feedback of type 1, third-order systems . Several references 

have rather comprehensive discussions of the root-locus ana l -  

y s i s  of tachometric feedback compensation; however, the d i r e c t  

comparison of feedback cornpensation and cascade compensation 

i s  almost t o t a l l y  ignored. 

T h a l e r ,  Bronzino and K i r k  have described a technique for 

reducing multi-loop feedback compensated systems t o  equivalent 

cascade compensated  system^.^ 
nique is  s i g n i f i c a n t  i n  that i t  permits the design of feedback 

compensators by applying the well-known techniques of cascade 

compensation. However, no general  i n s i g h t  i n t o  the r e l a t i v e  

advantages and disadvantages of  the two modes of compensation 

i s  afforded by th i s  technique. 

As a design too l ,  t h i s  tech- 

1-4. SYSTEM DESCRIPTIONS AND NOMENCLATURE 

The block-diagram representa t l ons  of cascade compensation 

and the general  case of feedback compensation are shown i n  

Figures 1-1 and 1-2, respect ively.  I n  these f i g u r e s  and 

throughout the thes i s ,  the l e t t e r  "G" w i t h  qua l i fy ing  subscr ip t  



I 

1 

5 

o r  euperscr ipt  w i l l  denote .loments of a system in the  d i r e c t  

pa th  and, s in i l a r ly ,  the l8tt.r "H" w i l l  denote elements i n  

a feedback path. The spec i f ic  elements shown I n  Figures  1-1 

and 1-2 are defined as follows: 

1. 

sys tern, 

01 is the plant  or o r i g i n a l  uncompenaated (bas i c )  

2. Qc is the cascade compensator. 

3. Q2 may be e i t h e r  a part of the p lan t  or an add i t iona l  

element added t o  the  d i r ec t  path during compensation. 

4. H1 i s  a feedback compensator i n se r t ed  i n  the Inner 

feedback path. 

5. H2 i s  a feedback compensator Inser ted  I n  the outer  

feedback path. 

R denotes the  reference input  f o r  the system and C de- 

notes the output controlled var iab le .  

Two special  cases of feedback compensation are developed 

in depth during the course of  t h i s  inves t iga t ion .  Both of 

these spec ia l  cases may be derived from the general  case of 

feedback compensation of  Fig. 1-2 by s e l e c t i v e l y  setting 

c e r t a i n  elements i n  the general case equal t o  one (ahor t -  

c i r c u i t )  o r  zero (open-circuit) .  The f i r s t  spec ia l  case is 

derived by s e t t i n g  H2 equal t o  zero and Q2 equal t o  one. 

block-diagram of Fig, 1-2 then reduce8 t o  a ringle feedback 

path containing H 1  as shown i n  Fig. 1-3. T h i s  rpcc ia l  case 

will be referred t o  as  the single-ioog ieed'irck compena~ted 

8ySter, 

The 

N. 

It 
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The second spec ia l  case I s  derived by setting d2 and H2 

The general  case of feedback both equal t o  one i n  Fig. 1-2. 

compensation then reduces t o  the form shown I n  Fig.  1-4. 

spec ia l  case w i l l  be re fer red  t o  as the "double-loop fsedback 

compensated system. 

This 

I t  

The figures on page 7 depicting the four oaaea of com- 

pensation will be r e fe r r ed  t o  throughout the thea is  t o  avoid 

the i r  dupl icat ion i n  each chapter. Special  system configura- 

t ions  and add i t iona l  nomenclature will be developed as the  

need arises. 



a - 
Bigure  1-1. Caacade aompensated sg8t.r. 

Figure 1-2. General case of feedback compenaation. 

Figure 1-3. Single-loop ieedbaak compen8at.d syrtom. 

Figure 1-4. Double-loop fsedbmk oorpcnsated ryrtem. 

7 



CHAPTER 2 

CWSED-MOP EQ,UIVALENCY FOR COMPENSATED SYSTEMS 

The vas t  major i ty  of ex i s t ing  Information on system com- 

pensation techniques is concerned w i t h  the subject  of cascade 

compensation. However, f o r  each cascade compensation network 

i t  i s  possible t o  derive a mathematical feedback funct ion that 

w i l l  produce the same ove ra l l  system t r a n s f e r  function when 

placed i n  a feedback path around the unconipenaated plant .  

form of the feedback funct ion depends upon the feedback con- 

f igu ra t ion ,  the uncompensated ~ y s t e m ,  and the caacade compen- 

s a t i o n  network t o  be replaced. The equations relating equiv- 

a l e n t  feedback and cascade compensation schemes f o r  a given 

uncompensated plant  and an ove ra l l  system t r a n s f e r  funct ion 

are developed i n  t h i s  chapter .  

o r  not  the t r a n s f e r  funct ion so derived can be physical ly  

r ea l i zed  i n  a p r a c t i c a l  control  system. 

t i ons  are therefore considered t o  determine If a physical 

passive network can be synthesized that  w i l l  y i e l d  the desired 

t r a n s f e r  function. 

t h e s i s  of R-C networks f o r  single-loop and double-loop teed- 

The 

It remains t o  be seen whether 

Rea l i zab i l i t y  condi- 

Special  a t t e n t i o n  is given t o  the syn- 

back compensated systems. 

2 -1 . EQUATIONS FOR EQUIVALENCY 

The equations r e l a t i n g  cascade and feedback compensation 
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networks will be developed first for the general  case of 

feedback colapensation shown i n  Fig. 1-2, page 7. The corre-  

sponding caacade compensated system i s  shown on the same page 

in Fig.  1-1. 

simplified for the spec ia l  cases of single-loop feedback com- 

The general  equations f o r  G2 and H i  are then  

pensation and double-loop feedback compensation by allowing 

appropriate  terms t o  equal one or zero. 

Equations f o r  General Case. The t r a n s f e r  funct ion f o r  

the general  case of feedback compensation can be expressed 

as fo l lows:  

R 1 + Gl(H1 + G2H2) 

The t r ans fe r  funct ion f o r  the cascade compensated system i s  

given by 

C GlGc 
- =  (2 -2 )  
H 1 + GlGc 

For dynamic equivalence, Eq. (2-1) must equal Eq. (2-2). 

S e t t i n g  these equations equal and solving f o r  G2 ,  

GlGc - - G1G2 

1 + G l ( H 1  + G2H2) 1 + GIGc  

(2-4) 
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G2 

.I I - 

Fina l ly ,  solving Eq. (2-3) f o r  H2 

(2-5) 

Equations (2-4), ( 2 - 5 ) ,  (2-6) and (2-7)  r e l a t e  the various 

t r a n s f e r  functions of the  cascade compensated system and the 

general  case of feedback compensation f o r  equivalence. For 

a given uncompensated p l a n t ,  GI, and cascade compensation 

network, G c ,  three in1;er-dependent equations must be solved 

f o r  the parameters of the equivalent feedback system. Two 

of the parameters can be selected a r b i t r a r i l y  on a t r i a l  and 

error basis and the t h i r d  parameter ca lcu la ted  from the 

appropriate  equation. 

Cascade and Single-loop Equivalency. If H2 i s  se t  equal 

t o  zero and G2 i s  set  equal t o  one i n  Fig. 1-2, page 7, the 

block-diagram reduces t o  the single-loop feedback compensated 

system of Fig. 1-3 on the aame page. The same subs t i t u t ions  
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i n  Eq. (2-6) r e s u l t s  i n  the following expression f o r  Hi f o r  

the single-loop case: 

1 + G ~ ( G ~  - 1) 
GlGc 

Hi = (2-8) 

Similar ly ,  subs t i t u t ion  of H2 = 0 and G2 = 1 i n t o  Eq. (2-5) 

r e su l t s  i n  the following expression f o r  GC 
1 

The equivalency t h a t  is assured by these equations can be 

demonstrated by determining the cha rac t e r i s t i c  equation for 

the  system employing a single-loop feedback compensation net-  

work defined by Eq. (2-8) .  The open-loop t r a n s f e r  function 

f o r  t h i s  system i s  G l H l ,  where 

(2-10) 

The cha rac t e r i s t i c  equat ion  f o r  t h i s  sys t em i s  given by the 

e x p r e s s i o n  1 + G I I I l  - -  0 o r  

Equation (2-11) reduces t o  the following 

1 + G I G c  = 0 

(2-11) 

(2-12) 

But Eq. (2-12) is a l s o  the cha rac t e r i s t i c  equation f o r  the 

cascade compensated system, and equivalency i s  thus seen t o  

e x i s t  . 
Cascade and Double-loop Equivalency. If H2 and G2 are 
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both se t  equal t o  one i n  Fig. 1-2, page 7, the block-diagram 

reduces t o  the double-loop feedback compensated system of 

Fig. 1-4 on the same page. The same subs t i tu t ions  i n  Eq. 

(2-6) results i n  the following expression f o r  H i  f o r  the 

double-loop case: 

1 - G, 

G l G C  
H1 = (2-13) 

Similar ly ,  subs t i t u t ion  o f  H2 = G2 = 1 i n t o  Eq. (2-5) r e s u l t s  

i n  the following expression f o r  Gc 

(2-14) 1 

1 + G l H l  
G, = 

The same r e s u l t s  for H i  and Gc could have been obtained 

by equating the appropriate open-loop t r a n s f e r  functions 

(OLTF) f o r  the two systems. The appropriate OLTF i s  derived 

by transforming the block-diagram shown i n  Fig. 1-4 into i t s  

equivalent form as i l l u s t r a t e d  i n  Fig. 2-1. The system GI i n  

Fig. 2-1 is s i m p l y  G1/( l  + GIH1), and t h i s  t r ans fe r  function 

i s  the OLTP f o r  the equivalent un i ty  feedback system. 

Figure 2-1. Equivalent double-loop feedback 
compensated system. 

Equating G I  and the  OLTF f o r  the cascade 

G1 
G I G c  = 

1 + QlHl 

compensated system 

(2-15) 
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1 - Gc 
H1 = 

G l G C  
(2-16) 

And Eq. (2-16) and Eq. (2-13) are the same. 

2-2. NETWORK SYNTHESIS 

For a given uncompensated p lan t ,  GI, and cascade compen- 

s a t i o n  network, Gc, Eq. (2-8) and (2-13) can be used t o  de- 

r i v e  the t r a n s f e r  funct ion f o r  equivalent feedback compensa- 

t i o n  networks tha t  w i l l  y i e l d  an ove ra l l  system t r a n s f e r  

function i d e n t i c a l  t o  the cascade compensated system. The 

expressions r e su l t i ng  from Eq. (2-8) and (2-13) can then be 

analyzed t o  determine whether the t r a n s f e r  functions they 

represent  are physically r ea l i zab le  as a l i n e a r  passive ne t -  

work. I n  general ,  i f  these equations ind ica t e  the require-  

ment f o r  an ac t ive  element i n  the compensation network, the 

cascade compensation approach would be preferred. An excep- 

t i o n  t o  t h i s  rule could exist i n  those cases where a tachom- 

e te r  by i t se l f  o r  i n  combination w i t h  some form of passive 

network could provide the desired t r a n s f e r  funct ion f o r  the 

feedback compensation network. 

The subject  of network synthesis is so  v a s t  and Involved 

tha t  no a t tempt  w i l l  be made t o  develop the theory o r  tech- 

niques i n  t h i s  paper. The only aspect  of network synthesis  

t ha t  will be discussed i s  the r e a l i z a b i l i t y  of the t r a n s f e r  

f’unctions expressed by Eq, (2-8) and (2-13). Baaic conditions 
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for the r e a l i z a b i l i t y  of passive networks i n  general  w i l l  be 

presented f i rs t ,  followed by a discussion and de l inea t ion  of 

conditions f o r  the spec ia l  case of R-C networks. The reader 

is r e fe r r ed  t o  severa l  references f o r  the proof of these 

conditions and the general  development of synthesis tech- 

n1ques.l 

appl ica t ion  of the r e a l i z a b i l i t y  conditions t o  the single- 

loop and double-loop feedback compensation casea and the 

i n t e r p r e t a t i o n  of‘ the r e su l t s .  

The remainder of  t h i s  chapter i s  concerned w i t h  the 

’Vincent Del Tor0 and S dney R. Parker,  Pr inc ip les  of 
Control Systems Engineering T Hew York: McGraw-Hill B ook 

3 O h n  V o m a t i c  Feedback Control System Synthesis 

tompany, Inc., 1960 , Chap. 12; E r n s t  A .  Guillemin, 

( N e w  York: McGraw-Hill Book Company, Inc. ,  1% 5 )  

of Passive Networks’(New York: John Wiley & Sons, 

Transfer Functions f o r  Passive Networks i n  General. The 

c h a r a c t e r i s t i c s  of passive transfer functions i n  general  may 

be summarized as follows:2 

1. A l l  poles of the t r ans fe r  funct ion must l i e  within 

the left-half  port ion of the s-plane. 

2. Zeros of the t ransfer  funct ion may l i e  anywhere 

within the s-plane. Minimum phase-shift t r a n s f e r  functions 

have their  zeros r e s t r i c t e d  t o  the left-half  of the s-plane. 

3. The highest power of s i n  the numerator may equal 

but cannot exceed the higheat power of s i n  the denominator. 
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Transfer Functions for R-C Networks. Once the r e a l i z a -  

b i l i t y  of the t r a n s f e r  function f o r  the feedback compensation 

network is established, i t  would be desirable t o  synthesize 

the  network s o l e l y  i n  terms of r e s i s t ance  and capacitance 

elements. Inductances are normally avoided s ince  the fre- 

quencies of i n t e r e s t  i n  control systems are so  low that 

l a rge  and heavy inductors would be required.  

R-C networks t o  achieve are the ladder networks; however, the 

zeros of the  t r a n s f e r  function a r e  r e s t r i c t e d  t o  the negative 

r e a l  ax i s  of the s-plane f o r  the ladder form. The l a t t i c e  

i s  the  most general  network configuration and any t r a n s f e r  

func t ion  r ea l i zab le  as an R-C network can be synthesized i n  

the l a t t i c e  form. The c h a r a c t e r i s t i c s  of R-C networks may 

The simplest 

be summarized a s  fo1lows: j  

1. The poles of the t r a n s f e r  funct ion a r e  r e s t r i c t e d  

t o  the  negative r e a l  ax i s  of the s-plane. 

2. For minimum-phase-shift networks, the zero8 o r  the 

t r a n s f e r  function a r e  r e s t r i c t e d  t o  the left-half s-plane. 

a )  

t i v e  r e a l  ax is .  

b) Para l le l - ladder  o r  s p l i t - T  networks--zeros 

allowed off the  negative r e a l  ax i s .  

R-C ladder network--zeros must l i e  on the nega- 

3. For non-minim-phase-shift networks, the zeros of  

the transfer funct ion a r e  permitted i n  the  right-half  s-plane. 
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A l a t t i c e  network i s  required f o r  t h i s  case. 

P r a c t i c a l  Considerations. For any given t r a n s f e r  func- 

t i o n  an i n f i n i t e  number of physical  networks can be derived 

t h a t  w i l l  s a t i s f y  the pole-zero loca t ion  and ga in  require- 

ments. However, most of these so lu t ions  w i l l  be Impractical  

f o r  one o r  more of the f o l l o w i n g  reasons: the network re- 

qui res  too many elements, t he  magnitude o f  the element values 

a r e  impract ical ,  the s teady-state  a t tenuat ion  i a  excessive,  

o r  the  network t r ans fe r  function i s  overly sens i t i ve  t o  small 

deviat ions i n  the  network element values. Even a f t e r  these 

f ac to r s  are considered there may be many p r a c t i c a l  networks 

tha t  w i l l  s a t i s f y  the given t r a n s f e r  function. The f i n a l  

choice of a compensation network may be a r b i t r a r y  o r  simply 

depend on the a v a i l a b i l i t y  o f  components and the c i r c u i t  

designer’s own preferences.  

2-3. APPLICATION OF NETWORK SYNTHESIS CONDITIONS TO FEED- 

BACK COMPENSATED SYSTEMS 

The equivalent feedback compensation t r a n s f e r  functions 

defined by Equations (2-8) and (2-13) are analyzed f o r  the i r  

r e a l i z a b i l i t y  i n  terms o f  the funct ions Q1 and Gc of‘ the 

cascade compensated system (See Fig. 2-2.) . 
G1 and Gc  are defined a s  follows: 

The functions 
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( 2 -18) 

I n  general ,  the order of s In the denominator of GI w i l l  be 

equal t o  or g r e a t e r  than the  order  of s in the numerator, 

The order  of s i n  the denominator of the cascade conpensation 

. 

mtwark,  Q,, will be e q ~ a l  te o r  greater tihan the order of s 

i n  the numerator f o r  a passive network. 

Single-loop Feedback Compenaatlon, If equationa (2-17) 

and (2-18) a r e  subs t i t u t ed  In Eq. (2-8), H1 w i l l  take the 

following form: 

K1* 1KCNC 
U' (2-19) 

Analyzing Eq. (2-19) i n  terms of the network synthesis  

conditions presented In Section 2-2, the following r e a t r i c -  

t i o n s  must be placed on 01 and 0, If H 1  I 8  t o  be r e a l i z a b l e  

as a passive network: 

1, The order of s In Dl must be equal t o  o r  greater 
4 

than the order  of s in N ' ,  L e . ,  0 [ D ' ( s ) ]  2 O [ N ' ( s ) ] .  

condition w i l l  e x i s t  for the following cases: 

T h i s  

a )  OIN1(s)] = O[aND1(s)] and OINc(a)] = O[aMD,(s)] 
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b) O I N 1 ( s ) ]  < Q[sNq(s)] and OfNc(s) J > 9[aWDc(s)] 
s o  t h a t  9 [ D t ( s ) ]  L Q I N 1 ( a ) ]  

The zeros of 01 and C3, must l i e  i n  the left-half of 2. 

the  s-plane. This restriction r e s u l t s  because the zeros of 

Q1 and a, are the poles of H1. 

Real izat ion of HI - as  an R-C network imposes the addi- 

t i o n a l  condition tha t  the zeros of Q.1 and G, must lie on the 

negative r e a l  axis of the s-plane. 

Double-loop Feedback Compensation. If Equations (2-17) 

and (2-18) a r e  subs t i tu ted  in Eq. (2-l3), H1 w i l l  take the 

A comparison of Eq. (2-20) and Eq. (2-19) reveal8 that 

the same r e s t r i c t i o n s  must be placed on O1 and Qc f o r  H1 t o  

be r ea l i zab le  as a passive network i n  general ,  o r  an R-C net -  

work i n  pa r t i cu la r ,  as were spec i f ied  for the single-loop 

feedback compensation case.  

For the pa r t i cu la r  case where Qc is a phaae-lag o r  

phase -lead network defined as follows : 

a + z  
a c = a + p  ( 2 -21) 

H1 f o r  the  double-loop feedback compensation case may be 



expressed as 

(2-22) 

Notice that  the term ( p  - z ) / ( s  + z) i s  a s imple phase-lag 

network i f  p > z .  However, the t r ans fe r  funct ion f o r  Hi may 

s t i l l  be very involved depending upon the form of GI. 

2-4. SUMMARY AND CONCLUSIONS 

Equations have been presented that  r e l a t e  the t r ans fe r  

functions f o r  cascade compensation networks and equivalent 

feedback compensation networks i n  terms of the uncompensated 

system t r a n s f e r  function. The bas is  f o r  these equations was 

closed-loop equivalency f o r  the compensated system. Since 

t w o  systems having the same t r ans fe r  funct ion are equivalent 

both s t a t i c a l l y  and dynamically, the equations r e l a t i n g  the 

t r a n s f e r  functions of  the various forms of compensation a r e  

appl icable  f o r  both steady-s t a t e  system e r r o r  equivalence 

(See Chapter 4.) and dynamic equivalence. 

the feedback compensation networks f o r  single-loop and double- 

loop systems were analyzed t o  determine the  conditions under 

which they could be physically r ea l i zed  as  passive networks, 

The equations f o r  

w i t h  spec ia l  a t t e n t i o n  given t o  R-C networks. It was noted 

t h a t  t h e  t r a n s f e r  functions f o r  the feedback networks a r e  

usua l ly  rather involved expressions,  and more s ign i f i can t ly ,  
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there  a r e  rather severe cons t ra in ts  imposed on GI and G, t o  

permit an equivalent feedback network t o  be physical ly  real-  

i z a b l e  w i t h  only res is tances  and capacitances. 



CHAPTER 3 

COMPARISON OF SYSTEM SENSITIVITIES 

The cha rac t e r i s t i c s  of the components making up a con- 

t r o l  system can change as  a r e s u l t  of  changing environmental 

conditions,  aging of components, e t c .  

ponent cha rac t e r i s t i c s  w i l l  be r e f l e c t e d  by a change i n  the 

t ransfer  function for the  system, w i t h  a r e s u l t i n g  e f f e c t  on 

the control led quant i ty .  

Houpis t h a t  t h e  degree o f  accuracy and s t a b i l i t y  of a control  

system can be improved by using feedback compensation.1 The 

conclusions by D'AZZO and Houpis are based on the comparison 

of a single-loop feedback compensated system w i t h  a un i ty  

feedback uncompensated system. 

feedback system can reduce the e f f e c t s  of system component 

changes on the control led quantity when compared w i t h  a un i ty  

feedback system having the same forward t r a n s f e r  function, 

GI. However, the same conclusion i s  not v a l i d  when comparing 

the non-unity feedback system w i t h  a cascade compensated sys-  

t e m .  

parent i n  the development that follows. 

Any change i n  the  com- 

It has been shown by D'AZZO and 

It i s  t rue  t h a t  the non-unity 

The s ignif icance of these conclusions w i l l  become ap-  

The e f f ec t s  of changes I n  both the uncompensated system, 

l Z ~ h ~  J i  D'AZZO and Constantine H. Houpis, Feedback 
Control System Analysis and hesi3 (New Y0I-k: #cGraw-Hl.Ii 
Book Company, 1966) , PP. 46 . 
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Gl, and the compensation elements, Gc and H1, are evaluated 

f o p  the following system configurations:  (1) open-loop, 

(2)  un i ty  feedback uncompensated, (3)  cascade compensated, 

(4) single-loop feedback compensated, and (5) double-loop 

feedback compensated. 

m e  cmsidered  t o  be constant, 

The input s igna l  R and the frequency 

3-1. OPEN-LOOP SYSTEM SENSITIVITY 

The open-loop system i s  shown i n  Fig. 3-1. The e f f e c t  

of a change i n  GI can be determined by d i f f e r e n t i a t i n g  

C = RG1 (3-1) 

dC = R d G l  (3-2) 

giving 

Subs t i t u t ing  R from Eq. (3-1) i n t o  Eq. (3-2) 

dC dG -=1 
C G i  

(3-3) 
A 

Therefore, a change i n  GI causes a corresponding change i n  

the output C .  The performance spec i f ica t ions  of the compo- 

nents  of GI must then be such t h a t  the system accuracy i s  

kept within spec i f ied  l imits.  

Figure 3-1. Open-loop aystsm. 

Employing the i d e n t i t y  d(1nu) = u'ldu, Eq. (3-3) can be 

put i n t o  the Toilowing fumt 

(3-4) dlnC = dlnGl 



dlnC dlnCPl = l  

Defining C and GI as follows: 

Subs t i tu t ing  Equations (3-6) and (3-7) i n t o  Eq. (3-4) 

dln)CI + jde, = dlnlGll  + jdeG, 

Equating real  and imaginary p a r t s  of Eq. (3-7) r e s u l t s  
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( 3 - 5 )  

( 3 - 6 )  

(3-7) 

(3-8) 

i n  the 

following r e l a t ionsh ip  between the d i f f e r e n t i a l  changes i n  

the magnitudes and pna:;e angles f o r  the sys tem,  G1, and the 

output ,  c: 
dlri IC1 = dlr, 13-91 

de, = dOGl (3-10) 

3-2. UNITY FEEDI~ACK UNCOMPENSATED SYSTEM SENSITIVITY 

The uni ty  feedback uncompensated system i s  shown I n  

F i g .  3-2. Proceeding i n  the same manner as i n  3-1 

G1 
C = R  

1 + GI 

dG1 dC = R 
(1 + GI)* 

Substicuting R from Eq. (3-11) i n t o  Eq. (3-12) 

dC 1 

C 1 + G1 
- =  

dlnC 1 
dlnGl 1 + GI 
- =  

(3-11) 

(3-12) 
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A comparison of Eq. (3-14) and Eq. (3-5) reveals  that the 

effect  o f  parameter changes in  GI upon the  output C i s  re- 

duced by the f a c t o r  f/(l + G1) when going from open-loop t o  

closed-loop control .  

Figure 3-2. Uni ty  feedback uncompensated system. 

3-3. CASCADE COMPENSATED SYSTEM SENSITIVITY 

The cascade compensated system i s  shown i n  Fig.  1-1, 

page 7. The e f f e c t  of changes i n  t h e  uncompensated system, 

G I ,  and t h e  compensation element, G c ,  a r e  evaluated below. 

S e n s i t i v i t y  t o  Changes in  G i .  F i r s t  consider t ha t  the 

compensation element i s  a constant w i t h  respect t o  the 

changes that a re  a f fec t ing  GI. Proceeding as before,  

GlGc C = R  
1 + G I G c  

GcdG1 
dC = R 

(1 + G1Gcl2 

Subs t i tu t ing  R from Eq. (3-15) i n t o  Eq. 

- -  - dC 
C 1 + G1Gc G 1  
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Therefore cascade compensation has reduced the effect of 

changes in GI by the factor 1/(1 + GIG,) when compared with 

the open-loop uncompensated system. This also constitutes 

an Improvement over the unity feedback uncompensated system 

if the magnitude of Gc is greater than one for the frequen- 

c i e s  of i n t e r e s t ,  

Sensitivity to Changes in Gc. Now consider that the 

uncompensated system, GI, is a constant and only the compo- 

nents of Gc are effected by changes. From Eq. (3-15), 
~ ( 1  + G~G,)G~ - G~*G, 

(1 + GlG,)2 
dC = 

RG1dGc 
- - 

(1 + G 1 Q 2  

Substituting R from Eq, (3-15) into Eq. (3-19) 

- dC 
C 
- -  

(3-19) 

(3-20) 

dlnC 1 
dlnG, 1 + GIG, - =  (3-21) 

A comparison of Eq. (3-21) and Eq. (3-18) reveals that the 
effect of parameter changes in Gc upon the output C is the 

same as for changes in G1, as would be expected. 

3-4. SINGLE-LOOP FEEDBACK COMPENSATED SYSTEM SENSITIVITY 

The single-loop feedback compensated system is shown in 

. P ~ W  -e. 1-3, page 7.  The e f f e c t  nf phapiges in GI and the com- 

pensation element, H1, are evaluated below. 
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S e n s i t i v i t y  t o  Changes in Gl. F i r s t  consider that H 1  

i s  a constant w i th  respec t  t o  the changes that  are a f f ec t ing  

Proceeding a s  before G 1  

G1 C = R  
1 + G l H 1  

dG1 

(1 + G 1 H 1 l 2  
dC = R 

Subs t i t u t ing  R from Eq. (3-22) i n t o  Eq. 

- dC 
C 
- -  

1 - -  - dlnC 
dlnGl 1 + G l H l  ( 3 -25) 

A comparison of Eq. (3-25) and Eq. (3-18) revea ls  the fac t  

t h a t  single-loop feedback compensation and cascade compensa- 

t i o n  of fe r  the same reduction i n  the e f f e c t  of changes in G 1  

upon the cont ro l led  quantity,  C.  That i s ,  i f  Gc and H i  are 

equal,  then Eq. (3-25) and Eq. (3-18) are i d e n t i c a l .  

S e n s i t i v i t y  t o  Changes i n  HL. Now consider  that GI is 

a constant  and only the components of H1 are a f f e c t e d  by 

changes. From Eq. (3-22) 

- G32RdH, 
A I dC = 

(1 + G ~ H ~  

Subs t i t u t ing  R from Eq. (3-22) into Eq. (,-26) and mu 

ing  and d iv ld ing  the r e s u l t i n g  equation by H1 gives  

d C  
- =  

( 3 -26) 

t i p l y -  

( 3 -27) 
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For  those values of frequency where I G l H l l  >> 1, Eq. (3-27) 

reduces t o  t h e  following form 

A comparison of Eq. (3-29) and Eq. (3-5) shows t h a t  a change 

i n  the feedback funct ion has approximately a d i r e c t  e f f e c t  

upon the output i n  the same manner as  f o r  the open-loop sys- 

t e m .  

3 -5. DOUBLE-LOOP FEEDBACK COMPENSATED SYSTEM SENSITIVITY 

The double-loop feedback compensated system i s  shown i n  

Fig. 1-4, page 7. The effect  of changes i n  GI and H 1  a r e  

aga i n  eva lua ted  be low. 

S e n s i t i v i t y  t o  Changes i n  G l .  Again consider t h a t  H 1  

i s  a constant.  Proceeding as  before 

C = R  G 1  
1 + G l ( H 1  + 1 )  

d G 1  dC = R 
+ G l ( H 1  + 1)12 

Subs t i tu t ing  R from Eq. (3-30) into Eq. (3-31) 

(3-32) 

(3-33) 
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A comparison of Equations (3-33), (3-25) and (3-18) reveals 

that  double-loop feedback compensation can have a greater 

e f f ec t  i n  reducing output changes due t o  changes in Gl than 

either single-loop feedback or cascade compensation. The 

degree of improvement depends upon the magnitude of H1. 

Sens i t i v i ty  t o  Changes in  Hi. Again conalder that 01 

i s  a constant. From Eq. (3-30) 

Subst i tut ing R from Eq. (3-30) i n t o  Eq. (3-34) and multiply- 

ing and dividing the resul t ing equation by H1 gives 

dC - G l H l  r =  
1 -+- G i ( H 1  + 1) 

- GlHl dlnC 
-1 1 + Q ( H 1  + 1) 

(3-35) 

(3-36) 

A comparison of Eq. (3-36) and Eq. (3-27) reveals a potent ia l  

improvement for the double-loop feedback compensated system. 

3-6. SENSITIVITY FUNCTION 

The s e n s i t i v i t y  of a 8y8temf8 responrt t o  a var ia t ion i n  

a syatem parameter can best be expressed by the "sens i t iv i ty  
function, 'I2 sr, which i s  diecu8sed by D I A Z Z O  and Houpis, 3 

*' 'Sensitivity and ~ 0 - l  Response for single-loop and 
Multiloop System, 
81.2, Fiignt Control hboratwy,  AS=, &%C, Wri+%t=?atterten 
AFB, Ohio, January, 1963. 

3D'Azzo and Houpie, z. e., pp. 469470. 

Technic81 Documentary Report ASD-TDR-62- 
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and is defined as 

parameter v a r i a  t Ions 1 Change i n  system response s'2 = [ 
Change In  open-loop parameter f o r  s p e c i f i e d  (3-37) 

Change is defined as the ratio of the d i f f e r e n t i a l  v a r i a t i o n  

of a func t ion  t o  the Function i tself .  Expressed d i f f e r e n t l y ,  

change m y  be &fined  iis t h e  differential of the nat;llral 

logarithm of the funct ion.  For each of the system cases i n  

Sect ion 3-1 through Sect ion 3-5, M I: C / R  i n  Eq. (3-37) . 6 
r e f e r s  t o  GI f o r  those cases where the  uncompensated p l an t  

i s  changing and refers t o  G, o r  HI when the  compensation ele- 

ment i s  the changing quant i ty .  

To demonstrate the appl ica t ion  of Eq. ( 3 0 3 7 ) ~  consider 

the single-loop feedback compensated system w i t h  6 = G1. 

Then 

Simi la r ly ,  f o r  6 = H 1  

The s e n s i t i v i t y  funct ions 

- 1, f o r  Q I H l  s 1 

f o r  each of  the system cases  

are tabula ted  i n  Table 3-1. 
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3-7. SUMMARY AND CONCLUSIOflS 

The e f f e c t s  of changes In the uncolnpensated system, Q1, 

and the compensation e l e m n t s ,  4, o r  HI, on the cont ro l led  

quant i ty ,  C, have been calculated f o r  s eve ra l  system config- 

u ra t ions  and parameter va r l a t iom.  The s e n s i t i v i t y  of each 

system’a response t o  system parameter va r i a t ions  has been 

expressed by the s e n s i t i v i t y  function, S z ,  and the r e s u l t s  

tabulated i n  Table 3-1. The s e n s i t i v i t y  funct ion never ex- 

ceeds a value of one, and the smaller i t s  value, the less 

s e n s i t i v e  the system w i l l  be t o  parameter var ia t ions .  

Referring t o  Table 3-1, it  i s  noted that f o r  va r i a t ions  

i n  01, cascade compensation and single-loop feedback compen- 

s a t i o n  can provide the same reduct ion i n  the s e n s i t i v i t y  

funct ion f o r  values of G, and H i  greater than one. For var- 

i a t i o n s  In  the compensation network Itself, the cascade corn- 

pensated system’s s e n s i t i v i t y  function, 1/( 1 + GIG,) , w i l l  

normally be less than the  corresponding s e n s i t i v i t y  h n c t l o n  

f o r  the single-loop feedback compensated 8ystcm, - QIH1/ 

(1 + CllH1). 

i s  normally going from a l o w  to a high energy level while the 

opposite is t rue  f o r  the  feedback path, it w i l l  o f ten  be more 

p r a c t i c a l  t o  provide the power requirement i n  the forward 

path and then design the feedback compensation network t o  

give the des i red  output accuracy and s t a b i l i t y .  

However, s ince the signs1 i n  the forward path 

~ - - A L - - L  ----n--m-+4n- npprrr g n n f r n f l a l  Doubie-isop &eeUUQlilL b U M & F e & A O -  Y I U b b  Y I & W L .  U W.C. w-**”---.. 

reduction In the s e n s i t i v i t y  functions f o r  chrngos In both 



T I B ~ ~  3-1 

SENSITIVITY m C T I O N S  

SYSTZS 

Open-loop (uncompensated) 

Unity feedback (uncompen- 
sated) 

Cascade compensated 

Single-loop feedback com- 
pensated 

Double-loop feedback com- 
pensated 

CHAwoINa 
PARAlETER 
OF SYSTEM+ 

SENSITIVI!FY 

FUNCTION 5; 

1 

Vhe system input, R, i s  constant. For those cases 

Con- 
where 01 is the  changing parameter, H 1  and 0, are constant 
w i t h  respect t o  t h e  changes that are af fec t ing  01. 
veraely, when H 1  and Gc are the changing parameters, Q1 
is constant. 



32 
the plant and the compensation network when compared with 

the single-loop case. When conpared with the cascade com- 

pensated system, the double-loop sys,tem offers a potential 

improvement i n  the sens i t iv i ty  f'unction f o r  changes i n  the 

plant. The actual improvement w i l l  depend upon the magnitude 

of the compensation function f o r  each case over the frequency 

range of interest. 



CHAPTER 4 

COMPAFUSON OF STEADY-STATE PERFORMANCE 

T h i s  chapter is concerned w i t h  the steady-atate perform- 

ante that can be achieved with feedback cmpensa t ion  as com- 

pared w i t h  caecade compensation. The funct ions of  i n t e r e s t  

a r e  the s teady-state  system e r r o r  and the steady-state ac tu-  

a t ing s igna l .  For t h i s  analysis  the system error,  is 

defined as the difference between the input  t o  the system 

and the  system response o r  output. 

Is defined as the  difference between the input  s igna l  and 

the feedback s igna l  as they appear a t  the input  t o  the com- 

pensated p lan t .  

cade compensation case but they have received very l i t t l e  

a t t e n t i o n  I n  the l i t e r a t u r e  f o r  the case of feedback compen- 

sa t ion ,  The r e s u l t s  of the analyals  presented w i l l  give 

valuable i n s i g h t  i n t o  the r e l a t i v e  8 u i t a b l l l t g  of the two 

moderr of compensation f o r  a given p lan t  and a given a e t  of  

performance spec i f ica t ions .  

The ac tua t ing  s igna l ,  8 , 

These functions a r e  w e l l  known f o r  the  cas- 

4-1 , CASCADE COMPENSATION 

Steady-state c o n d l t l o n ~  are preaented f o r  the system 

shown In Fig, 1-1, page 7. The f i r a t  funct ion of I n t e r e a t  

is the a te rbg-s ta te  system e r r o r ,  

Steady-rtate Syatem Error. The r y s t n  errorD eaD IS 



defined as follows: 

8, = R - C R ( l  - C / R )  

The system t r a n s f e r  function is 

Substitution nf Eq, 14-21 i n t o  Ea_. (4-1) gives 

From Eq, (4-3), the  steady-state system e r r o r  is 

e e ( t ) s s  = 1i.m e , ( t?  
t 4 W  
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(4-1) 

The input ,  expressed i n  a general  Laplace transform f o r  s tep ,  

ramp, parabolic and other a lgebra ic  inputs ,  is given by 

R ( s )  = */SI 14-5) 

where 

R ( S )  = rl/s f o r  a s t e p  input  

= r2/s2 f o r  a ramp input  

q / s 3  f o r  a parabolic input  

Subs t i tu t ion  of Eq. (4-5) I n t o  Eq. (4-4) gives 
1 

The Laplace transform of the uncompensated system, G1, 

is defined i n  the following fac tored  form: 
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where 

N 1  = (1 + S'fa)(l + s*fb)"' 

D1 = (1 + ~ ' f l ) ( l  + s f * ) * * *  

I n  eq. (4-7) , N denotes the type (number of pure integra-  

t i ons )  of the uncompensated system and w i l l  i n  general  be 

equal t o ,  o r  greater than, zero. 

Similar ly ,  the compensation element, G,, is defined i n  

the following generalized form: 

Kc(1 + Sfa ' ) ( l  + 9*"')*'' KCNC 

where 

N, I (1 + S f & ' ) ( l  + s y b t ) o * '  

Dc = (1 + s'fl ')(l + sG')*** 
In Eq. (4-8), M may take on any value (pos i t i ve  o r  negative) 

depending on the form of t h e  compensation element. If Gc is 

of a form having a posi t ive power of s i n  the numerator, then 

M in Eq. (4-8) w i l l  be negative,  and G, w i l l  be referred t o  

as a negative type  M element. 

Subs t i tu t ion  of Eq. (4-7) and Eq. (4-8) i n t o  

Equation (4-9) may be s implif ied by noting t h a t  

Eq. (4-6) 

lim N1 = lim D1 3: lirn N e  = 1- Dc = 1 
s+ 0 S*O s-0 s*o (4-10) 

Equation (4-9) then reduces t o  the following general  expression 
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for the steady-state system e r ro r :  

(4-11) 

Note that N + M i n  Eq. (4-11) denotes the type of the compen- 

sated system, where i t  is understood thal if M is negative 

and !MI > M, a negative system type will rssult, 

The steady-state system e r r o r  can be developed i n  a 

systematic manner by considering the value of Eq. (4-11) f o r  

three values of the function N + M. 
1. N + M = = O  

numerator and 

(4-12) 

2. N + M > O  

e e ( t ) s ,  ~0 f o r  N + M > ( M -  1) 

= d l K c  for N + M = ( O C -  1) 

a s 0 0  f o r  N + M <(a- 1) 
3. N + # < O  

For negative values of the funct ion N + M, Eq. (4-11) 

may be converted t o  a more convenient form by multiplying 

denomina t o r  by s "*I giv ing  
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To demonstrate the appl icat ion of the equations derived 

above, consider the case o f  a step input ,  where& = 1, and 

Eq. (4-11) becomes 
N+M r, s 

(4-14) 

Equation (4-14) reduces t o  one of th ree  values depending on 

the value of N + M, i ,e , ,  

ee(t),s = 0 f o r N + M 1  1 

= rl/(l + KIKc) f o r  N + M = 0 

= w  f o r  N + M 4 0  
The term KIKc  i n  the  preceding equations corresponds t o  

what i s  usual ly  referred t o  as the e r r o r  coe f f i c i en t  f o r  a 

system. For a s tep input ,  K I K c  i s  the pos i t ion  o r  s t e p  e r r o r  

coe f f i c i en t .  

e r r o r  coe f f i c i en t ,  

acce l e ra t ion  o r  parabolic e r r o r  coe f f i c i en t .  

For a ramp input, K I K c  i s  the ve loc i ty  o r  ramp 

And f o r  a pa rabo l i c  input,  KIKc i s  the 

The s teady-state  system errors f o r  s eve ra l  values of 

N and M are tabulated i n  Table 4-1 f o r  a s tep ,  ramp, and 

parabol ic  input.  Results can of course be obtained f o r  

higher-order inputs  by s u b s t i t u t i n g  the appropriate  value of 

- i n t o  Eq. (4-11). 

Steady-rtate Actuating Signal. Referring t o  Pig. 1-1, 

i t  i s  obvious t h a t  the steady-state ac tua t ing  signal, & (t)3s, 
and the s teady-state  system error, Be[t)sss are equal f o r  the 

cascade compensated system, l ee . ,  = 8, = R - C. Theref ore,  
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STEADY -STATE SYSTEM ERROR, 0, ( t ) AND STEADY -STATE 

ACTUATING SIGNAL, &( t) 99, FOR CASCADE 
COMPENSATED sysTEIIs[e,( t) ss = e( t) ss 3 

PARABOLIC 
INPUT 

m= 3) 

COMPENSATED 
SYSTEM TYPE RAMP INPUT 

(d= 2) 

TYPE - 
M N N+M 

0 

P 

0 

-P 
0 00 

0 

1 

P+1 

1 

0 

-P 

1 0 W 

1 

2 

0 

P+2 

1 

0 

2 

-P 

2 0 0 

2 

1 

3 
0 

p+3 

1 

2 

0 

3 
-P 

3 0 0 0 

&+I P > 3  0 0 

-1 

-2 

4 - 
<O 00 I.1 

NOTE: P denote8 any integer 2 1 .  Q denotes any integer 
such that P <  Q. 
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the r e s u l t s  in Table 4-1 a re  va l id  f o r  both of these steady- 

state functions.  

4-2. FEEDBACK COMPENSATION 

The steady-state system e r r o r  is developed f o r  the gen- 

eral case of feedback compensation i l l u s t r a t e d  by Fig. 1-2, 

page 7. The general  expression f o r  t h i s  case is then appl ied 

t o  the spec ia l  cases of single-loop and double-loop feedback 

compensation. The steady-state ac tua t ing  s igna l s  f o r  these 

s p e c i a l  cases a r e  then developed. 

Steady-state System Error--General Case. The system 

error,  e,, is defined as f o l l o w s :  

8 e  = R - C = R ( l  - C/R)  (4-15) 

The system t r a n s f e r  function is 

C G l Q 2  

- 1 + G l ( H 1  + G2H2)  

Subs t i tu t ion  of Eq. (4-16) into Eq. (4-15) gives 

(4-16) 

From Eq. (4-17), the s teady-state  system e r r o r  i s  

(4-18) 
s*o 1 + " l ( H 1  + Q2H2)  

Again expressing the input  i n  generalized form 

R(a) = r&/sd (4-19) 



SubfjtitUtiOn of Eq. (4-19) i n t o  Eq. (4-18) gives the expres- 

s i o n  f o r  the s teady-state  system e r r o r  for the general  case 

of feedback compensation 

Steady-state Sys tern Error--Single-loop Feedback Compen- 

sa t ion .  The block-diagram for the single-loop feedback 

compensated system i s  shown i n  Fig. 1-3, page 7. The steady- 

state system e r r o r  f o r  this  system i s  derived from Eq, (4-20) 

by setting H2 = 0 and G 2  = 1. 

made, Eq. (4-20) reduces t o  the following expression: 

If these subs t i t u t ions  are 

G1 and H1 are defined by the same expressions as  f o r  the cas- 

cade compensated case, L e . ,  G1 i s  defined by Eq. (4-7) and 

HI i s  the same as Gc, defined by Eq. (4-8). 

theae equations i n t o  Eq. (4-21) gives  

Subs t i t u t ion  of 

Equation (4-22) may be simplified by making the subs t i t u t ions  

of' Eq. (4-10) . The r e su l t i ng  equation i s  the general  expres- 

s i o n  f o r  the s teady-state  system e r r o r  

Equation (4-23) is evaluated f o r  a a t e p  input  (o(= 1) 
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and f o r  higher-order inputs ( d >  1) as follows: 

1. For a s t e p  input ,  o( = 1 and Eq. (4-23) takes the form 

The evaluat ion of Eq. (4-24) is more involved than for the 

comparable cascade compensation equation [See Eq. (4-12). 1. 
Notice that  Eq. (4-12) reduces t o  only one of three values 

depending on the value of the sum of N and M .  Equation (4-24) 

reduces t o  one of f i v e  values depending on the separate  values 

of N and M. As i n  the cascade compensation case, N is assumed 

t o  be equal t o ,  o r  g rea t e r  than, zero, whereas M may take on 

any value. 

possible  combinations of M and N a r e  tabulated i n  Table 4-2. 

These r e s u l t s  w e r e  obtained by s u b s t i t u t i o n  of the appro- 

p r i a t e  values of M and N i n t o  Eq. (4-24). 

values of M, Eq. (4-24) can be converted t o  a more convenient 

form by multiplying the numerator and denominator by the 

f a c t o r  s IMJ a s  follows: 

The s teady-state  system error  for the various 

For negative 

= , M < 0 (4-25) 

Equation (4-25) i s  v a l i d  only f o r  negative values of M. 

2. For  cX> 1, i . e . ,  f o r  inputs  of an order  greater than 

a s t e p  function, the steady-state system e r r o r  approaches 
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STEADY-STATE SYSTEM ERROR, e,( t )  ss AND STEADY-STATE 
ACTUATING SIGNAL, & (t) 98 a FOR SINGLE-LOOP 

FEEDBACK COMPENSATED SYSTEMS 

TYPE 

N 

0 

> O  

20 

0 

>O - 

~ 

STEP INPUT (O( = 1) 

I 

K, -1 
r1 - 

KC 

-00 

&( t )  ss 

00 

00 

00 

00 

ob 

*The ac tua t ing  signals f o r  h i g h e r o r d e r  inputs  (o( > 1) 
a r e  not  shown since the corresponding e r r o r  signals are 
i n f i n i t e .  
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i n f i n i t y  f o r  any value of M and M. 

i t  i s  obvious t h a t  Be( t ) ss+= f o r  M 2 0 s ince  N 2 0 (by 

def in i t ion)  and the  numerator of Eq. (4-23) i s  always f i n i t e ,  

whereas the denominator approaches zero due to  the f a c t o r  

S d-l. 

same result is obttaified f o r  m g a t i v e  vzlces of M. 

i s  again converted t o  a more convenient form by multiplying 

numerator and denominator by ,IM' . 

Referring t o  Eq. (4-23) , 

(The l imi t  of so<-1 as s+O i s  zero f o r  o(> 1.) The 

Eq. (4-23) 

Thus 

By reasoning s imi l a r  t o  t h a t  used f o r  the case where Mk 0, 

i t  follows that  Eq. (4-26) approaches I n f i n i t y  f o r  d >  1. 

A number of s ign i f i can t  conclusions can be drawn from 

Table 4-2 concerning the s teady-state  response of a single- 

loop feedback compensated system. 

1. Since the s teady-state  system e r r o r  I s  i n f i n i t e  f o r  

any input  funct ion of a higher order  than a s t ep ,  a s ing le-  

loop feedback compensated system can never funct ion as a 

follow-up device.' The steady-state system er ror  w i l l  be 

'A step input  refers t o  a s t e p  change i n  the reference 
function, whatever form t he  reference funct ion may take. For 
example, if the reference input  is ve loc i ty  (zero f o r  t < 0 
and a constant value f o r  t > 0),  t h i s  is a step funct ion 
Input i n  ve loc i ty  and the single-loop feedback compensated 
system can produce a f i n i t e  steady-state system e r r o r  i n  
v e l o c i t  . However, if the reference input  i s  c o n s i d e r g  t o  
d i o n ,  then the s t ep  input  in veloc i ty  corresponds t o  
a ramp input  i n  pos i t ion  and the s teady-state  system e r r o r  
i n  pos i t i on  is i n f i n i t e .  T h i s  f a c t  i s  evident when the 
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f i n i t e  and the system can behave as a regula tor  (constant  

output f o r  constant input )  only for the following values of 

M and W w i t h  the addi t iona l  r e s t r i c t i o n s  on K1 and Kc as 

noted: 

For K, = 1, 0e( t ) sS  = q / ( l  + K 1 )  and the e r r o r  can 

be made small f o r  K1B 1. 

r l K c / ( l  + Kc) = q / ( l  + l&) and the e r r o r  can be 

made small f o r  K c < < l .  

For Kl = 1, ee(t),S = 

b) N > O , M = O  

(4-28) 

Notice tha t  the e r r o r  Is independent of K1 and can 

be made equal t o  zero f o r  Kc = 1. 

poss ib l e  t o  reduce the e r r o r  t o  zero by proper se lec-  

t i o n  of the  gain o r  a t t enua t ion  constant  of H1. 

can then be adjusted independently t o  place the roots  

of the c h a r a c t e r i s t i c  equation f o r  the closed-loop 

Therefore, i t  is 

K1 

system i n  the  proper loca t ion  for the desired system 

f i n i t e  e r r o r  i n  ve loc i ty  l a  considered i n  terms of  the posl- 
t i o n  functions.  The input  pos i t ion  and output pos i t ion  will 
be ramp f'unctions having d i f f e ren t  alopsa  due t o  the  ve loc i ty  
e r ro r .  A t  s teady-state (t-ab), the e r r o r  between the Input 
and output poai t ion w i l l  thua be i n f i n i t e .  
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t r a n s i e n t  response, 

the steady-state system e r ro r .  An example of a 

A change i n  K1 w i l l  not a f fec t  

system that takes advantage of' this pr inc ip l e  i s  

presented i n  Section A-1  of the Appendix. 

C )  N = 0, P f =  -1 

ee(tIss= r l ( l  - K1) (4-29) 

For 0 4 K1 4 1, ee(t),,  < rl and f o r  the special 

case nhere K1= 1, the e r r o r  is zero. 

the e r r o r  is independent of' K,. 

adjusted to give 8 small error and Kc adjusted 1- 

Notice that 

K1 can thus be 

dependently t o  give the desired t r a v l e n t  resrmnse. 

2, The steady-state system e r r o r  f o r  M > 0 1s equal t o  

r1 regardless of the value of N ( the  type of the uncompen- 

sa t ed  s y s t e m ) .  T h i s  s i t u a t i o n  e x i s t s  because the s t eady-  

s ta te  output i s  always zero when the compensating element I s  

t y p e  1 or grea te r .  

s+o 
(4-30) 

Equation (4-30) I s  equal t o  zero f o r  M 2 1 s o  that 

e&),,= rWSB - C ( t I s s  

'= 'i 
- -r. - 

L 

3. The s teady-state  system e r r o r  approaches I n f i n i t y  



46 

f o r  a type 1 o r  g rea t e r  uncompensated system ( N >  0) f o r  any 

negative value of M ( M <  0 ) .  

Block-diagram manipulation gives i n s i g h t  t o  a physical 

i n t e r p r e t a t i o n  of the r e s u l t s  of the steady-state system 

e r r o r  ana lys i s  . An example of block-diagram manipulation 

and i n t e r p r e t a t i o n  of  a single-loop feedback compensated sys- 

t e m  is given i n  Section A - 2  of the Appendix. 

Steady-s t a t e  Actuating Signal--Single-loop Feedback 

Compensation. The steady-state ac tua t ing  s igna l  for 

the single-loop feedback compensated system (See Fig. 1-3, 

page 7.) is defined as follows: 

C & = R - C H I  = R ( 1  --• R 

The system t r a n s f e r  function i s  

C G, 

Subs t i t u t ion  of  Eq. (4-32) i n t o  Eq. (4-31) gives 

R 
1 + G l H l  (4-33) = 

G1 
1 + G l H l  

But Eq. (4-33) i s  the same form as Eq. (4-3) for the cascade 

compensated s teady-state  system e r r o r  ( o r  s teady-atate  ac tu-  

a t i n g  signal) . Therefore, the ac tua t ing  signal for s lng le -  

loop feedback compensation can be determined by s u b s t i t u t i n g  

H,(s) A f o r  G,(s) w i n  the appropriate equations derived in 

Sect ion 4-1. Since the generalized equations f o r  H1(s) and 



47 

G , ( s )  are the same, t h e  r e s u l t s  f o r  single-loop feedback 

compensation can be obtained d i r e c t l y  from Table 4-1. 

ac tua t ing  s igna l s  f o r  a s tep  input  are tabulated along w i t h  

the e r r o r  s igna l s  I n  Table 4-2. 

higher-order inputs  ( d > 1 )  are not  shown i n  t h i s  table since 

the corresponding e r ror  s igna ls  are i n f i n i t e .  

The 

The ac tua t ing  signals f o r  

Steady-state System Error--Double-loop Feedback Compen- 

sa t ion .  The block-diagram f o r  the double-loop feedback 

compensated system i s  shown i n  Fig. 1-4, page 7. The steady- 

state system e r r o r  f o r  t h i s  system i s  derived from Eq. (4-20) 

by s e t t i n g  H2 = 1 and G2 = 1. 

made, Eq. (4-20) reduces t o  the following expression: 

If these subs t i t u t ions  are 

(4-34) lim rd [ 1 + '1'1 ] 
e e ( t l s s  = 

s*o 8 - 1  1 + G ~ ( H ~  + 1)  

G 1  i s  defined by Eq. (4-7) and H1 I s  defined by Eq. (4-8). 

Subs t i t u t ion  of these equations i n t o  Eq. (4-34) gives 

(4-35) 
sN+MDlD, + K I N I K c N c  

ee(t) , ,  = lim -[ 
S*O Sw-1 ~ " D ~ D ,  + K ~ N ~ ( K , N ,  + 

Equation (4-35) may be simplified by making the subs t i t u t ions  

of Eq. (4-10). The r e su l t i ng  equation is the general  expres- 

aion f o r  the steady-state system e r r o r .  

As will be snown, t h e  steaciy-state systeiii e ~ m r  f o r  the 

double-loop feedback compensation case can be f i n i t e  f o r  input  
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functions of an order g rea t e r  than one (o( > 1). 

convenient method f o r  developing the system e r r o r  i s  t o  ca te -  

gorize the compensated systems f i r s t  i n  terms of the value of 

M, the type of the compensation element; secondly i n  terms 

of the value of N, the  type o f  the  uncompensated plant ;  and 

f i n a l l y  i n  terms o f a ,  t h e  order of the input function. The 

ind ica ted  subs t i t u t ions  for M and N a r e  made i n  Eq. (4-36) 

t o  arrive a t  each 8,(t),, i n  the development which fo l lows .  

The most 

sN t K1(Kc i 1 

= - f o r 0 0  1 

b) For N > 0, 

= a f o r d )  1 

2. B j O  

For any value of N ( N 2  0 by d e f i n i t i o n ) ,  
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a) For N = 0, 

= rl/(l + K1) f o r d  = 1 

=afore(= 1 

(4-40) 
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(4-39) 

0e(t)ss = 0 for N > (a- 1) 
= r 4 1  f o r  N = (a- 1) 

==for N < ( M -  1) 
c )  For N > (MI 

(4-41) 

(4-42) 



= - f o r  N < (W-  l), /MI < ( M -  1) 
The s teady-state  system errors  a r e  tabulated i n  Table 4-3 

f o r  s tep ,  ramp, and parabolic Input funct ions.  

Referring t o  Table 4-3 and the preceding development, 

several  s ign i f i can t  conclusions can be drawn f r o m  the  results 

of the steady-state system analysis .  These conclusions a re  

summarized below . 
1. The steady-state system e r r o r  f o r  input  functions of 

a higher order than a s t e p  (oC> 1) i s  f i n i t e  only i f  ( a )  the 

compensation element has a posi t ive power of s i n  the numer- 

a t n r  !M < 0); ( h )  the type of t h e  uncompensated sys t em i s  one 

o r  g rea t e r  (N > 0) ,  and ( c )  the lesser value of IMI and N i s  
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51 
S T E A D Y S T A T E  SYSTEM ERROR, e,( t ) s s ,  AND STEADY-STATE 

ACTUATING SIGNAL, & ( t) 88 ,  FOR DOUBLE-LOOP 
FEEDBACK COMPENSATED SYSTEMS 

TYPE 

N 

0 

0 

0 

\ -  

1 

1 

1 

1 

2 

2 

>2 

>2 

>2 

>2 

>2 

M 

0 

>O 

(0 

- 

0 

> O  

-1 

<-1 

0 

> O  

-1 

-2 

<-2 

0 

>O 

-1 

-3 
-L 

(-2 - 

STEP INPUT 
(d= 1) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

c! 

0 

W P  INPUT 
( o b  2) 

?ARABOLIC INPUT 
(o(= 3) 

00 

00 

00 

00 

00 

00 

03 

00 

00 

00 

00 

*e(t)ls i s  not  tabulated f o r  those cases where the 
correspond ng e,( t)ss I s  Inf in i t e .  
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equal to ,  o r  greater than, the order  of the input  funct ion 

minus one (o<- 1) .  

cases  where the lesser value of /MI and N i s  equal t o  o r  

greater than&. The significance of these conditions I n  

terns of the physical system I s  presented i n  Section A - 3  of  

The e r r o r  will be equal to zero f o r  those 

the Appendix. 

2. For N = M = 0 and d -  1 o r  N = -M a n d 0 ( =  N + 1, 

The e r r o r  can be made small by making K, <4 1 and K1 >) 1 so 

t h a t  

3.  For M < 0, N = 0 and d =  1, 

e&),, = rl/O + K1) 

e&),, = rol/k1 
For M < 0, [ M I  > N > 0 a n d & =  N + 1 

The e r ror  for both these cases i s  Independent of  Kc and can 

be made small f o r  large values of K1. 

e r r o r  can be set  by adJustlng K l ,  and the dominant roo t s  can 

The s teady-state  sys tem 

be set  f o r  the desired t rans ien t  response by adjusting Kc. 

4. For M < 0, IMI < N and o(= !MI + 1 
e,( t)s8 = rdKc 

The error is independent of K1 and can be made small f o r  

K,<< 1. 
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5. For N > 0, M = 0 and o( = 1, 

@,(t),, = r1KcAl + K,) 
The e r r o r  Is independent of' K1 and can be made small f o r  

K, << 1. 

Steady-s tate Actuating Slgml--Double -loop Feedback 

Compensation. The steady-state ac tua t ing  s igna l  for 

the double-loop feedback compensated system (See Fig. 1-4, 

page 7.)  i s  def ined as follows: 

E = c/o1 

R G1 

The system t r a n s f e r  funct ion is  

C G1 
R 
- =  

1 + G i ( H 1  + 1) 

Subs t i tu t ion  o f  Eq. (4-46) into Eq. (4-45) gives 

& 1 
R 
- =  

1 + G ~ ( H ~  + 1) 

(4-45) 

( 4 -46) 

(4-47) 

From Eq. (4-47) the steady-state ac tua t ing  error i s  

Again expressing R(  s )  i n  tne general  form of Eq. (4-5) , and 

G , ( s )  and H1(s) i n  the general  forms of Eq. (4-7) and Eq. 

(4-8) , respect ively,  Eq. (4-48) becomes 
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Equation (4-49) may be simplif ied by making the subs t i t u t ions  

of Eq. (4-10). The r e su l t i ng  equation is the general  expres- 

s ion  f o r  the steady-state ac tua t ing  signal. 

The steady-state  actuating signal i s  developed by catego- 

r i z i n g  the compensated systems f i rs t  i n  terms of EI, secondly 

i n  terms of N, and f i n a l l y  i n  terms o f a .  

s t i t u t i o n s  for M and N are made i n  Eq. (4-50) t o  a r r i v e  a t  

each e( t ) s s  i n  the development which follows. 

The indicated sub- 

1. M = O  

E rl f o r d  = 1 
1 + K ~ ( K ,  + 1) 

b) For N >  0, 

E ( t I s s  = 0 f o r  N > (o<- 1) 

= rdfil(K, + 1) f o r  N = (d- 1) 

n o 0  f o r  N < (a- 1) 
2. M > O  

& ( t ) , ,  = 0 f o r  (N + M )  > ( d -  1)  



= r d / k l K c  f o r  (N + M )  = ( O C -  1) 

r 0 0  f o r  ( N  + M) < ( d -  1) 

3.  M < O  

L 

a )  For N = 0, 

= rl/l + K1 f o r  O ( =  1 

= o o  f o r  01 > 1 
b) For N > 0 

&t)ss = 0 f o r  N >  (a- 1) 

= rd/k, f o r  N = (O(  - 1) 
= 00 for N <  (C%- 1) 

The s teady-state  actuat ing s igna l s  for s tep ,  ramp, and 

parabolic inputs  a r e  tabulated i n  Table 4-3 f o r  cases where 

the  corresponding steady-state e r r o r  is f i n i t e .  

4-3. SUMMARY AND CONCUTSIONS 

The discussions and developments presented i n  t h i s  chap- 

ter have brought t o  l i gh t  the important f a c t  t h a t  the choice 

of feedback versus cascade compensation must be considered 

i n  terms of the s teady-state  system e r r o r  a s  w e l l  as t h e  
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dynamic behavior. F i n i t e  system e r r o r  i s  impossible t o  

achieve for ramp, parabolic,  o r  higher-order input  signals 

i n t o  a single-loop feedback compensated system. The use of 

t h i s  form of compensation i s  therefore  l imited t o  regula tor  

appllcatlons where the input  is a reference-level type of 

step function. (See Footnote on page 43.) The double-loop 

feedback compensated system maintains a direct  correspondence 

between the system input  and output funct ions because of the  

u n i t y  feedback path.  The steady-state system e r r o r  f o r  t h i s  

configuration can be made f i n i t e ,  i n  f a c t  zero, f o r  a ramp o r  

higher-order input  funct ion by proper choice of the compensa- 

t i o n  network. 

There are several addi t iona l  conclusions which may be 

deduced from Tables 4-1, 4-2 and 4-3 by in t e rp re t ing  tne 

r e s u l t s  i n  these tables i n  terms of the block-diagrams of 

the physical systems represented. For example, f o r  a double- 

loop feedback compensated system w i t h  N = 0, M < 0, it i s  

noted from Table 4-3 that the s teady-state  ac tua t ing  signal 

and the steady-state system e r ro r  are bo th  equal t o  r l n  + KL- 
From a physical  standpoint t h i s  r e s u l t  i s  expected s ince  t h e  

inner-loop f o r  the system I s  open-circuited a t  steady-state 

(s- 0) and the system would therefore  reduce t o  a s i m p l e  

t y p e  0 un i ty  feedback system for which the steady-state  system 

error and ac tua t ing  s igna l  are equal,  i . e . ,  rid + KS. 
single-ioop feedback compenaateb system x i t h  N = 0, P? = O i  

reduces t o  the same uni ty  feedback system a t  s teady-state  

The 
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when Kc = 1 (See Table 4-2). 

pretation further, the double-loop feedback compensated system 

f o r  N > 0, M ( 0  (See Table 4-3) will reduce to a unity feed- 

back system of type N a s  s+O ( H I - 0 ) .  The steady-state 

system error and actuating signal are therefore zero f o r  a 

step l ~ p ~ t ,  hecause a s t e p  Input into a type 1 or greater 

unity feedback system produces both zero  steady-state system 

error and actuating s ignal .  

Carrying th i s  physical inter-  



CHAPTER 5 

LOG-MOMJLUS ANALYSIS  OF COMPENSATED SYSTEMS 

The log-modulus p lo t  i s  an e f f e c t i v e  method f o r  graph- 

i c a l l y  comparing the  r e l a t i v e  effects of cascade and feedback 

compensation i n  terms of frequency response. T h i s  method Is 

normally appl ied  t o  the open-loop t r a n s f e r  function f o r  the 

cascade compensation case, and the closed-loop system response 

is then determined from zero db. crossing points  and t h e  phase 

margin.' 

a t i c  method f o r  approximating the magnitude of closed-loop 

t r a n s f e r  f'unctions. The closed-loop t r a n s f e r  functions f o r  

cascade compensated systems and various forms of feedback 

compensated systems are then analyzed t o  establish the re la-  

t i v e  e f f e c t s  of the two modes of compensation. 

The approach I n  t h i s  chapter is t o  develop a system- 

The v a l i d i t y  of the  approximation that is used I n  a r r l v -  

ing  a t  the magnitude of t h e  closed-loop t r a n s f e r  function is 

demonstrated for the  simple u n i t y  feedback system of Pig.  5-1, 

page 62. This proof applies t o  the compensated systems that 

are invest igated i n  t h i s  chapter as w e l l .  

5-1. AN APPROXIMATION FOR THE MAGNITUDE OF A CLOSED-LOOP 

TRANSFER FUNCTION 

'Vincent D e l  Tor0 and S dney R. Parker, Pr inciples  of 
Control Sys terns Engineer TNew York: M c G r a w ~ i l l  Bo ok 
 om^^# Inca, 19601 
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The closed-loop t r a n s f e r  function for the  system shown 

i n  Fig.  5-1 is 

C 01 

The magnitude of C/R I s  given by 

(5-1)  

The denominator of Eq. (5-2) may be expressed a s  follows: 

11 + Glf = {[1 + R e ( G 1 ) l 2  + [Lm(Gl)l .i" ( 5 - 3 )  

where Re(G1) i s  the r e a l  pa r t  of  GI and Im(G1) I s  t he  Imagi- 

nary p a r t  of GI .  

depend on the value of l G l l  as follows: 

The approximate value of 11 + G 1  I will 

1. 

2 .  

When I GI 1 << 1, 

Re(G1) << 1 and Im(G1) << 1 

Therefore, r e f e r r ing  t o  Eq. ( 5 - 3 )  , 
11 + G1l -1  

'dhen lGll 3 1, one of the following must be true: 

a)  

b) 

Re(G1) >> 1 and 1011 R$ He(G1) 

Im(G1) >> 1 and 101 I W Im(G1) 

For any of these cases, 11 + G1 I Q$ I G1 1 
Therefore, the following approximation i s  seen t o  be 

val id:  
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(5-44 

5-2. IXM-MOMJLUS REPRESENTATIONS FOR COMPENSATED SYSTEMS 

The iiiignitude approximation technique developed i n  

Sect ion 5-1 is  employed In  the ana lys i s  and comparison of 

cascade and feedback compensated systems. The f i r s t  system 

t o  be considered I s  the  cascade compensated case. 

Cascade Compensation. The t r a n s f e r  funct ion f o r  the 

cascade compensated system shown In Fig. 1-1, page 7, is 

given by 

C Q l Q C  

1 + GIGc  
( 5 - 5 )  

The magnitude of t h i s  t r ans fe r  function may be expressed as 

roiiows: 

for lGIGcl >>1 

The s t r a i g h t - l i n e  log-modulus p lo t  o r  Eq. (5-6) is con- 

s t ruc t ed  by p l o t t i n g  (GIGc l  I n  db, u n i t s  versus log w on s e m i -  

log paper as i l l u s t r a t e d  In Fig. 5-2, page 62. 

where the p l o t  croasei zero db. w i l l  be r e fe r r ed  t o  as we. 

A t  wC, I OlOC1 = 1. 

l e e . ,  idb. ,  for w <w, and w i l l  be less than one, l e e . ,  -db.# 

The frequency 

Usually I alac( w i l l  be greater than one, 
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f o r  w > wc. 

numerator of GIGc i s  le88 than the order  of s i n  the denom- 

i n a t o r ,  such that a s  w + O ,  O1Oc-coand a s  w - t d o ,  O 1 G c - t O .  

The magnitude approximation f o r  the  cascade compensated 

system t r a n s f e r  function can be represented i n  block-diagram 

T h i s  is the  case when the order of s i n  the 

form 8s Shown i n  Fig. 5-3. 

Feedback Compensation. The magnitude approximation 

technique i s  app l i ed  t o  the single-loop and double-loop feed- 

back compensated systems. The Information derived from these 

systems is then used i n  developing the magnitude approxima- 

t i o n  technique f o r  the general case of feedback Compensation. 

The single-loop feedback compensated system is shown i n  

Fig. 1-3, page 7. The system t r a n s f e r  funct ion is given by 

C Q1 
- E  

1 + GIHl 
(5-7) 

The magnitude o f  th i s  t r ans fe r  funct ion may be expressed as  

fol lows:  

1 l lotlce that I GIHl l  = 1 for 1011 =,lHll 
The s t r a i g h t - l i n e  log-modulus p l o t  of Eq. (5-8) i s  con- 

I 1 - 1  

s t ruc t ed  by p l o t t i n g  lO, i  and i H l l  

on semi-log paper a8 i l l u s t m t c d  i n  Fig. 5-4, page 64. 

I n  db. units versus log w 

The 
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Figure 5-1. Unity feedback system (uncompensated). 

Figure 5-2. 
for a cascade compensated aystem. 

Straight-line log-modulus plot of I C / R i  

Figure 5-3. 
compensated sya tern tranef or f'unc tlon. 

Magnitude approximation for a caecade 
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frequency where 101 1 - lH11 

t l on  of these two plots .  

same reasoning applies t o  the plot  of w i t h  respect t o  

t h i s  f v e n c y  8s was specified f o r  wc I n  the previous cas- 

cade campumation case. 

l a  determined by the lntersec-  

It we c a l l  t h i s  frequency, wo, the 

Th8 8 % 1 l g l e - l O O p  feedback compensated system may be con- 

verted t o  an equivalent cascade coarpensated system w i t h  

block pmceding the sumnation point a8 shown i n  Fig, 5-5, The 

magnitude approximation can therefore be represented a8 in 

Fig. 5-6. 

The double-loop feedback compensated system is shown In 

Fig. 14, page 7. The system t ransfer  function l a  given by 

C 01 - 
1 - 

1 + Q1(H1 + 1) 
(5-9) 

The angnitude of this  t ranafer  function may be expressed as 

The atralght-line log-3nodulus p l o t  of 131 may be con- 

s t ructed from Eq. (5-10) by plot t ing loll and IH1 + 11-l; 

however, a more aystematic approach is t o  convert the double- 

loop ryetam of ~ig. 1-4 i n t o  i t a  equivalent single-loop f o r a  

shown In  Plg. 5-7, page 66. The approxlmate magnitude of 

c/h  it^ then evaluated in two atop8 am follows: 
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Figure 5-4. 
single-loop feedback compensated system. 

Straight-line log-modulus plot of I C b I  for a 

Figure 5-5. 
feedback compensated system. 

Equivalent block-diagram f ozm for a singh - I .,rtp 



1. Fig. 5-7 is i n  the same form as Fig.  5-1, and 

lG '1  = G1 
1 + G l H l  

Q' 
.c 

C 
R l + O t  
- 

1 
M- f o r  lQIHll >> 1 (5-12a) 

lHl l  

Thus 

* I O (  f o r  lctll (< 1 (5-l lb)  

2. Since G t  I s  t he  t r ans fe r  funct ion for a single-loop 

feedback compensated system [See Eq. (5-8). ] 

The s t r a igh t - l i ne  log-modulus p l o t  of I f 1  may be con- 

s t ruc t ed  now by p l o t t i n g  l G l l  and IH1l-' i n  db. u n i t s  vemus 

log  w as  i l l u s t r a t e d  i n  Fig. 5-8. Notice that  i f  wo is less 

than the frequency w c t  where the p l o t  of I Gll crosses tne  0 

db. axis,  then I C/R 1 is  equal t o  one f o r  w < wCt and equal t u  

l G l l  f o r  w > wet. I s  not  involved i n  tne 

so lu t ion  f o r  I C/k I i n  t h i s  case. 

The function I H I 1  

The general  case f o r  feedback compensation is i l l u s t r a t e d  

i n  Fig. 1-2, page 7. The system t r a n s f e r  funct ion I s  

The magnitude approximation f o r  C / R  may be derived i n  a sys- 

tematic manner by converting Fig. 1-2 into i t s  equivalent 

single-loop feedback form shown I n  Fig. 5=9. I C/RI  is then 
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Figure 5-7. Eqyivalent block-diagram form for  a double- 
loop feedback compensated system, 

Figure 5-8. 
double-loop feedback compensated system. 

Straight-line log-modulus plot of I C / R I  f o r  a 

C 
G' I 

* 

-7 
Figure 5-9. 
of feedback compensation. 

Equivalent block-diagram form for  general case 
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evaluated i n  two steps as follows: 

1, Fig. 5-8 is  in the same form as the single-loop feed- 

back compensated system of Fig. 1-3, and 

C a' 
R 1 + O ' H 2  
- =  

Tnus 

2. Since G I  i s  the transfer funct ion f o r  a single-loop 

feedback compensated system preceded by the funct ion G2 

%1G1G21 f o r  l G l H , (  << 1 (5-15tr) 

Referring t o  Equations (5-14) and (5-15), t o  determine 

I C/RI i t  is necessary t o  plot only I H21-', I G & I l l  and 

I G1G21 . The p l o t s  of I G2h11 and I Q1G21 w i l l  determine I 0'1 

and then the p l o t s  of I GI1 and I H2 1-l w i l l  f i x  I C / h  I f o r  the 

general  case of feedback compensation. 

Example. To i l l u s t r a t e  the pr inc ip les  that  have been 

developed i n  t h i s  chapter, consider an example where 

G1 = 10/s2(s + 1) and Qc = H 1  P 8 .  The magnitude approxl- 
-..L1-.- * , ~  ~ ~ v I I  E - ,  vl. CL- (r,,F 3ystez &----Pnr.  A.n-C.1  -."L 

b A 7 Q 1 1 U A G A  A U&&b U I U A A  be de\relcged fDr 

the  cascade compensated system and the  single-loop and double- 
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loop feedback compensated sys tems.  

For the  cascade compensated system, the  following term 

i s  p lo t t ed  in db. u n i t s  i n  Fig. 5-10: 

1 C / R !  for the cascade compensated system I s  constructed 

according t o  Eq. (5-6) and appears as the heavy l i n e  labled 

@ i n  Fig. f j - lO.  The closed-loop system t r a n s f e r  funct ion can 

be derived as follows: 

1 + GIGc 1 + lO/s(s + 1) 

Notice that  the straight-line log-modulus p l o t  of Eq. (5-17) 

yields  the same r e s u l t  as was obtained from the p l o t  of Eq. 

(5-16), with Wn = K O  corresponding t o  wC. 

For the  single-loop feedback compensated system, the 

following terms are p lo t ted  i n  db. u n i t s  I n  Fig. 5-10: 

I C / R I  f o r  the single-loop feedback compensated system I s  con- 

a t ruc ted  according t o  Eq. (5-8) and appears as the heavy l i n e  

labled@ in Fig. 5-10. The closed-loop system t r a n s f e r  func- 

t i o n  can be derived as follows: 
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lO/S2(S + 1) 
I 

01 = C - 
1 + G l H 1  1 + l O / 8 ( ~  + 1 )  

2 

S( s2 + 2 6 ~ 9  + Wn2) 
(5-19) 

wn 
P 

10 

*(s2 + s + 10) 
1 

Again, no t ice  that the s t r a igh t - l i ne  log-modulus p l o t  of Eq. 

(5-19) y i e lds  the same r e s u l t  as was obtained from the p l o t  

of Eq. (5-18). 

For the double-loop feedback compensated system, the 

same terms apply that are plotted in Fig. 5-10 f o r  the s ingle-  

loop feedback compensated system, Le. ,  Eq. (5-18). lC/R I 
f o r  the double-loop case is constructed according t o  Equations 

(5-11) and (5-12) and appears as the heavy line labled@ in 

Fig. 5-10. The closed-loop system t r a n s f e r  funct ion can be 

derived as fol lows:  

C 1o/s2(s + 1)  

(5-20)  10 - - 
( s  + l)(S* + 10) 

F lna l ly ,  no t ice  again that the s t r a i g h t - l i n e  log-modulus p l o t  

of Eq. (5-20) yields the same r e s u l t  as was obtained from the 

p l o t  of Eq. (5-18). 

5-3. SUMMARY AND CONCLUSIONS 

The log-modulus p l o t  has been shown t o  be a convenient 

t e z h n i q ~ e  for grzphically displaying the approximate closed- 

l o o p  frequency response for compensated systems. Several 
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important charac te r i s  t i c s  or coapcn8ated systems become 

apparent from the logjnodulus plot  analysis. It i s  noted 

that the cascade compensated sy8tem t r ans fe r  funct ion Is 

uni ty  f o r  lower frequencies and fal ls  off according t o  the 

product ala, for higher frequencies, providing that 

Gl(jw)Qc(jn)- 0 as w - q ) .  

single-loop feedback compensated system depends on the In- 

The t r ans fe r  funct ion f o r  the 

verse of the compensation network f o r  lower frequencies and 

falls  of f  i n  accordance w i t h  the uncompensated systen t rans-  

fer funct ion,  01, a t  higher frequencies.  The t r ans fe r  func- 

t i o n  for the double-loop feedback compensated system w i l l  

e l t h e r  have a positive s l o p e  (If HI has a pos i t ive  slope) 

o r  be uni ty  as i n  the cascade case for low frequencies.  A t  

intermediate frequencies, the  t r a n s f e r  func t ion  can assume 

several forms depending upon the form of the compensation 

network and the uncompensated system, G1. 

c i e s ,  the t r ans fe r  function fa l l s  off i n  accordance w i t h  01, 

a s  in the single-loop feedback compensation case. 

A t  higher frequen- 

Each form of compensation has been shown t o  a f f e c t  the 

closed-loop system response i n  I t s  own c h a r a c t e r i s t i c  man- 

ner.  These r e s u l t s  must be considered I n  the  se l ec t ion  of 

a compensation network and the system configurat ion for t h i s  

network f o r  a given plant  and des i red  system response. 



CHAPTER 6 

POLE-ZERO ANALYSIS OF COMPENSATED SYSTEMS 

The c h a r a c t e r i s t i c  equation for a cont ro l  system I s  

determined by s e t t i n g  the denominator of the system's closed- 

loop t r a n s f e r  funct ion equal t o  zero. The roots  of the re- 

s u l t i n g  equation are the poles of the closed-loop t r a n s r e r  

funct ion.  The zeros a r e  the roo t s  of the  numerator of the 

closed-loop t r a n s f e r  function. The t r a n s i e n t  response of a 

cont ro l  system depends upon the pole-zero configuration of 

the  closed-loop transfer function f o r  the sys tem.  For a 

given p lan t ,  cascade compensation and the various forms of 

feedback compensation w i l l  a f f e c t  t h e  pole-zero configurat ion 

of the closed-loop t r ans fe r  funct ion i n  a d i f f e r e n t  manner. 

For a second-order system, the roots  of the character-  

i s t i c  equation may be calculated by solving a quadratic equa- 

t i on .  For nigher-order systems seve ra l  techniques a re  a v a i l -  

ab l e  f o r  ca l cu la t ing  the roots  of the c h a r a c t e r i s t i c  equation. 

The technique tha t  i s  employed i n  t h i s  chapter  is the root-  

locus method developed by Walter R. Evans.' 

behind this method will not be developed i n  this chapter,  

but is readi ly  ava i l ab le  t o  the reader i n  almost any recent 

The theory 
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cont ro l  systems textbook. Basical ly ,  the root-locus method 

i s  a graphical  technique for determining the roo t s  of a 

c h a r a c t e r i s t i c  equation i n  terms of a system parameter that 

v a r i e s  from zero t o  In f in i ty .  The parameter that i s  usual ly  

var ied is the open-loop gain of the system. An important 

point  t o  note is t ha t  tie root-locus metnod uses the open-loop 

t r a n s f e r  function of a system t o  y i e l d  prec ise  information 

about the closed-loop t r ans i en t  response of the system. 

The first  part  of this chapter compares the r e l a t i v e  

e f f e c t s  of cascade compensation and feedback compensation on 

the pole-zero configuration of the open-loop and closed-loop 

t r a n s f e r  functions.  An example is presented t o  i l l u s t r a t e  

these e f f e c t s  i n  terms of the root-locus p l o t .  The l a t t e r  

part of t h e  chapter inves t iga tes  the e f f e c t s  of zeros on the 

t r ans i en t  response of a cont ro l  system. 

6-1. POLES AND ZEROS OF COMPENSATED SYSTEMS 

The poles and zeros f o r  cascade compensated systems and 

the  single-loop and double-loop forms of feedback compensation 

are defined i n  terms of tne poles and zeros of the uncompen- 

sated p lan t ,  01, and t h e  compensation network, Qc o r  H i .  

F i r s t  consider the  cascade compensated system. 

Cascade Compensation. G,(s) and G,(s) f o r  the  cascade 

compensated system shown in Fig. 1-1, page 7, are defined as 

follows f o r  t h i s  ana lys i s :  
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The adjus tab le  gain parameters occur as f a c t o r s  i n  N1 and N,. 

The open-loop t r a n s f e r  function f o r  the cascade compensated 

system is GIQc. 

I n t o  t h i s  expression gives 

Subs t i tu t ion  of Equations (6-1) and (6-2) 

The closed-loop t r a n s f e r  function f o r  t h i s  case I s  

C G1Qc 
(6-4) 

Subs t i t u t ion  of Equations (6-1) and (6-2) i n t o  Eq. (6-4) gives 

C *1NC 
- 

DlD, + N I N c  
(6-5) 

From Eq. (6-5) i t  is noted tha t  the zeros of C/H occur 

where NIN, .C 0, and therefore ,  C / R  has zeros where G1 and G ,  

have zeros.2 the zeros of the open- Referring t o  Eq. (6-3) 

loop and closed-loop t r a n s f e r  f’unctlons are the same. 

2This conclusion I s  i n  general  v a l i d  only when the uncom- 
pensated p lan t  and the compensation network have no common 
poles or zeros, 
pole-zem cancel la t ion,  t h i s  conclusion must be re- interpreted.  
See page 79 f o r  a discussion of‘ t h i s  problem. 

When the compensation network introduces 
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The poles of Eq. (6-5) occur where 

DID, + NINc = 0 3 ( 6-61 

Equation (6-6) is the cha rac t e r i s t i c  equation f o r  the cascade 

compensated system. This equation I s  put I n t o  root-locus 

equation form by dividing through by DIDC, giving the expres- 

s ion  

The l e f t  s ide  of Eq, (6-7) is the open-loop t r a n s f e r  function 

( GIBc) for the cascade compensated system. 

Single-loop Feedback Compensation. The single-loop ieed- 

back compensated system is shown in F i g .  1-3, page 7. 

f o r  t h i s  system is defined by Eq. (6-1) and H 1 ( s )  is given by 

a ~ ( s )  

The adJus tab le  gain parameter again occurs i n  the numerator, 

Nc. 
same as for cascade compensation, i . eOs  

The open-loop t r ans fe r  funct ion f o r  this case i s  the 

The closed-loop t r a n s f e r  f’unctlon is given by 

(6-10) C O1 - =  
1 + GIHl 
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Subs t i tu t ion  of Equations (6-1) and (6-8) i n t o  Eq. (6-10) 

gives  

(6-11) 

From Eq. (6-11) It is noted that the zeros of C/R occur 

w h e r e  NIDc = 0 ,  and therefore ,  C/R has zeros wnere 01 ha8 

zeros and where H1 has poles.4 The zeros of C/R are not the 

same as  the zeros of the open-loop t r a n s f e r  h c t l o n  [See 

Eq. (6-9).] as was t h e  case f o r  cascade compensation. The 

s ignif icance of' the difference i n  zeros w i l l  be established 

i n  Sect ion 6-2. 

The poles of Eq. (6-11) occur where 

(6-12) 5 DIDc + NlNc = 0 

Equation (6-12) is the cha rac t e r i s t i c  equation for the s ing le-  

loop feedback compensated system. Notice that  this equation 
6 

i s  i d e n t i c a l  t o  Eq. (6-6) f o r  the cascade compenaated system, 

Equation (6-12) w i l l  y i e ld  the same root-locus equation as 

Eq. (6-7), Le. ,  

Therefore, the root-locus p lo t s  will be the same for cascade 
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and single-loop feedback compensated systems . 

Double-loop Feedback Conpe neation. a l ( s )  and H1(s) for 

the double-loop feedback compensated eystem shown In  Fig. 

14, page 7, are defined by Equations (6-1) and (6-8) respec- 

tively, ThC cloaed-loop t ranafer  ftmction f o r  this case I s  

- C O1 
= 1 + Q1(H1 + 1)  

(6-13) 

Subst i tut ion of Equations (6-1) and (6-8) i n t o  Eq. (6-13) 

gives 

C "1% 

~ D ~ D ~  + N ~ ( N ,  + D,) 
(6-14) 

A comparison of Eq. (6-14) and &q. (6-11) reveals that 

the zeros f o r  the double-loop case are the same as  f o r  the 

single-loop caae . 
The poles of Eq. (6-14) occur where 

(6-15) 7 DIDc + N1(Nc + Dc) - 0 

Equation (6-15) is  the charac te r i s t ic  equation f o r  the double- 

loop feedback compensated eystem. 

Eq. (6-15) are not the same a i  for the single-loop case. 

Motice that the poles of 

Equation (6-15) can be reduced t o  three different  root- 

locus equations corresponding to  three d i f fe ren t  forms of 

block-diagram manipulation of the double-loop feedback 
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compensated system shown I n  F i g .  1-4, page 7. These root -  

locus equations are derived as followr: 

1. If Eq. (6-15) is divided through by DIDc, the follow- 

ing root-locus equation r e s u l t s :  

(6-16) 

Notice t h a t  Eq. (6-16) corresponds to the  aystem block-diagram 

form shown In Fig. 6- l (a) ,  page 80, which has the open-loop 

t r a n s f e r  funct ion 

(6-17) 

2. If Eq. (6-15) I s  divided through by the expression 

DIDc + NINc, the following ~ ) o t - l o c u 8  equation r e s u l t s :  

= - 1  N l D C  ( 6-18) 

Equation (6-18) corresponds t o  the system blockdiagram form 

shown In Fig. 6- l (b) ,  page 80, which has the open-loop t r ans -  

fe r  Punc t i on  

01 NlDc (6-19) - -  
1 + G l H 1  DID, + N l N C  

Notice that Eq. (6-19) I s  the  closed-loop t r a n s f e r  func t ion  

f o r  the single-loop feedback compensated system. 

3. If Eq. (6-15) is divided through by the expression 

n-n + N-n -8 the f ~ l l o u i n g  root-locus equation r e s u l t s :  'l'C 
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Equation (6-20) corresponds to the system blockdiagrar  r o m  

shown I n  Fig. 6-l(c) which has the open-loop transfer function 

The userulness of each of the previous form8 f o r  the 

root-locus equation w i l l  depend on which system parameter 

needs t o  be isolated as the variable f o r  the root-locus plot .  

Effects  of Pole-zero Cancellation. For each of the com- 

pensated systems that have been discussed I n  the previous 

paragraphs, cer ta in  statements were made concerning the pole- 

zero configurations for the closed-loop t r ans fe r  functions 

tha t  bo not necessarily apply when the comlpcnaatlon network 

introduces pole-zero cancellation. These s t a t en~ in t s  were 

indicated by a reference to the Footnote on page 74. Since 

compensation networks a re  often selected t o  produce a pole- 

zero caneellation, i t  is necessary t o  invest igate  this ai tua-  

t ion  and re-evaluate the statements i n  question. A n  example 

w i l l  serve t o  c l a r i f y  the probles. 

Consider an uncompensated plant  having the t ransfer  

function 

(6-22) 



I H,+l I . 

Figure 6-1. 
feedback compensated system. 

Block-dlagram forms for the double-loop 
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The closed-loop t r ans fe r  functions are calculated below f o r  

each form or compensation that  ha8 been considered previously 

and for two case8 of pole-zero cancel la t ion:  (1) Zero of com- 

pensation network cancels pole of plant ,  and ( a )  Pole of com- 

pensation network cancels zero or plant .  Exception8 w i l l  be 

noted t o  the previous statements that have been referenced 

t o  the Footnote on page 74. 

1. The compensation network I s  given by 

The open-loop t r ans fe r  function f o r  cascade o r  single-loop 

feedback compensation i s  

( 6-24) 

The zero of the compensation network has canceled one of the 

poles of the plant .  

The closed-loop transfer func t ion  f o r  the caacade com- 

pensated system is 

Notice that the zero of Eq. (6-25) 1s tho zero of Q1 but - not 

the zero of Qc. 

where DIDc + N I N c  = 0 .  

Also, the  poles  of Eq. (6-25) do - not occur 

For the  single-loop feedback com~n8rt.d 8yat.m 
. \ f  K l i a  + A l \ a  t 4) 

Q1 .. (6-26) C - 
= 1 + QIHl ( 8  + 2 ) [ ( s  + 3)(8 + 4) + X1Kc(8 + I ) ]  
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Notice that the character is t ic  equation f o r  this case is  not 

the same 823 for the cascade case. 

- 

For the double-loop feedback compensated system 

C % 
-3. 

1 + Q1(H1+l) 

Notice that the poles of Eq. (6-27) do not  occur where 

DID, + N1(Nc i- Dc) - 0 .  

2. The compensation network I s  given by 

$,(a + 4) N,(d 

(s + 1)  Deb) 
Oc = H i  = =- (6-28) 

The open-loop t ransfer  function for cascade or single-loop 

feedback compensation I s  

The pole of the compensation network has canceled the zero of 

the plant. 

The closed-loop transfer f’unction for the cascade com- 

pensated system l a  

Notice that  the zero of Eq. (6.30) I 8  the zero of Qc but not 
%he ~ p r ~  ni RiG 

where DIDc + NINc  = 0 .  

A L ~ ,  the ga3,+E of Ea,, (6-30) do not occur - 



w l e - - T a c h o m e t e r  Plus Phase-lag Compensation. As an 

example of the principles that  have been developed in t h i s  

section, consider the system having the t ransfer  function 

For the single-loop fecsbb.ck compensated system 

C X l b  + 1) 
O1 r (6-31) - E  

1 + Q l H l  ( 8  + 2)(8 + 3) + KIKc(S + 4) 
Notice that the zero of Eq. (6-31) I s  the zero of Q1 but 

the pole of HI. Also, the  poles of Eq. (6-31) do nof otcur 
unere DID, + NINc  = 0 .  

For the double-loop feedback compensated 

C 
- P  

1 + Ql(H1 + 1) 

sya tern 

K1( a+1)2 

Notice tha t  the p o l e s  of Eq. (6-32) do not occur where - 
DIDc + N1(Nc + D,) = 0 .  

Kl 
a(s  + 1) 

Q1 = (6-33) 

The root-locus f o r  the uncompensated system l a  sketched in 

Fig. 6-2, page 86. 0 

8The root-loci and the pole-zero configurations that are 
presented for t h i s  example are not drawn t o  sca le  but serve 
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The compensation network for t h i s  example consis ts  of a 

tachometer i n  series w i t h  a phare-lag network and ha8 the 

t ransfer  function 

The mot- loe i  and the pole-zero zonf3.gwrations of the 

closed-loop t ransfer  f’unctlons are developed below f o r  the 

case8 of cascade compensation and single-loop and double-loop 

feedback compensation. 

1. Cascade compensation. The open-loop t ransfer  runc- 

t l o n  f o r  the cascade compensated system is given by 

(6-35) Kl%s I K l K C  

%OC pc a(8 + l ) ( S  + 4) (8 + l ) ( 8  + 4) 

The root-locus corresponding t o  Eq. (6-35) 18 shown i n  Fig .  

6-3, page 86, f o r  I;Im the variable parameter. 

t ransfer  function for the cascade oompeneated rystem I s  given 

The closed-loop 

by 

%KC ( 6-36) 

Notice that the zero a t  the origin and the pole a t  the or igin 

cancel each other in Eq. (6-36) . The pole-zero c o n f i g u ~ t i o n  

t o  I l l u s t r a t e  the r e l a t ive  e f fec ts  of the vrrious forms of 
cornpensation on the original rystem. 



e 
correepondlng to  Eq. (6-36) i r  rhom in Fig. 6-4 for an arbs- 

tmw value of K1, indicated in Ng. 6-3 as Kit. 
2. Singlo-loop feedback oorp.nr8tion. Tho open-loop 

tranefer function for  thla system I 8  the same a. that of the 

( 6-37) ILA 
( 8  + l ) ( r  + 4) 

a181 - 
The root-locus correapondinl: to Eq. (6-37) i r  rhawn in Hs. 
6-3. The closed-loop transfer runetion for the slngle-loop 

feedback compensated system is 

Notice that the pole a t  the o r u i n  -8 cancoled b the open- 

loop transfer function but rpporrs In th8 clored-loop trans- 

fer function. Tho pole-zero configuration C O Z T e r p O n d i n g  t o  

Eq. (6-38) I s  ahom In Fig. 6-5 for KIg0 an arbltmry value 

of K l .  

3. Double-loop feedbaok compnrrrtlon. Th8 t31088d-lOOp 

transfor f'unction for th io  r y r k r  I 8  

C Q1 
-I 

1 + O l ( H 1  + 1) 

R - 
s ( a +  1):s + 4)+ lCl[8(Ke + 1) + 41 

( 6-39) 

The numerator of Eq, (6-,19) $8 a thlrddrder squation b a s  

and w i l l  therofore yield three roots (poler) for 8 given value 
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1 -  
\ f  1 

I 
- 4  I -1 

~ igure  6-2 . Root-locur for uncompensated syrtem. 
[a1 - q/B(s + 1) I .  

r \  r 6  

Figure 6-3. 
and S i n g l € t - l O O p  feedback compenaated ~y i t em.  

Root-locus f o r  caeicadc compensated system 

[OIQc 0 O l H l  = KIKc/( 8 + 1)( 8 + 4) 1. 

X 
I 
1 r 
I 

I 
I e6 

t -4 -1 I * 
Figure 6-4. Pole-zero conflg- 
uration for cascade compensatlon. 

R 
c KlKc - I I  

(6 + l ) ( 8  + 4) +K1ICC 

t J* 

Figure 6-5 . 
uration for single-loop feedback 
cornpeneation. 

Pole -zero conf ig- 

C K,b + 41 
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of K1 and K,. 

pole-zero configurations are detemlned below f o r  the three 

system cases depicted I n  Pig.  6-1. 

The r o o t - l o c i m d  corresponding clo8ed-loop 

a) For the open-loop t ransfer  function 

K ~ ( I C ,  + i)(r  + 4& + 1)  
Gl(H1 + 1) - (6-40) 

8 ( 8  8 l)!e + 4) 
'pho root-loci w i l l  888ullb one of thme forma, depend- 

ing on the value of K,. 
corresponding pole-zero configurrt lons f o r  an arbi-  

trary value of Kl, K l ' ,  am shown i n  Fig. 6-6. 

Notice tha t  when Kc = 3, there 16 a pole-zero cancel- 

l a t ion  i n  Eq. (6-110) but E q .  (6-39) # the cloeed-loop 

These root- loci  m d  t h e  

t ransfer  function, y&eld8 8 pole a t  s - 1. For 

Kc > 3, a dominant pole occurs on the nemt lve  real 

axia . 
b) For the  open-loop tmnefer  function 

Notiee that Bq. (6-41) f r  idont ica l  t o  Bq. (6-38), 

the closed-loop trenrfer function f o r  the b a l e - l o o p  

feedback compensated ry8t.r. The pole-zero config- 

urat ion f o r  the open-loop trmsier function for the 

double-loop system is therefore specl i iad by Fig, 6-5 

f o r  ICl), the arbitrary m l u e  o r  K l .  The resul t ing 

root-locus for the double-loop system w i t h  K, 88 the 
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a) 0 < K c  < 3 ( - 4 <  c < =  1). 

J W  
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X 

J U  

-6 

t Jw 

I I 
I X I 

R o o t  - loc i  IC, ’ (O ‘ < Pole-Zen, Configurations 
Figure 6-6. 
double-loop feedback comp8nrat.d s y s t a  having open-loop 
transfer function or 01(H1 + 1). 

Root-loci and pole-zero configurations for 
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var iab le  parameter i a  ahown in Fig. 6-7(a) . 
is chosen t o  correspond t o  a set of real  poles i n  

Fig. 6-3, page 86, the root-locus f o r  the double- 

loop system as shown in Fig. 6-7(b) w i l l  r e s u l t .  

The pole-zero configurations f o r  the closed-loop 

systems are s l s ~  shown in Fig ,  6-7 for an arbitrary 

value of Kc, K c t .  

c )  

If K l  

For the open-loop t r a n s f e r  funct ion 

K l K C S  QIHl = 
1 + 01 ( S  + J+)[s(s + 1)  + K 1 J  

Notice that the bracketed term in  the denominator 

of Eq. ( 6 4 2 )  i s  the c h a r a c t e r i s t i c  equation f o r  the 

closed-loop system cons is t ing  of the uncompensated 

p lan t ,  01, with a unity feedback path. 

locus for t h i s  system I s  shown i n  Pig. 6-2, page 86. 

For ICl', an arbi t rary value of IC1, the r e s u l t i n g  

root-locus f o r  the double-loop feedback compensated 

The r o o t -  

system i a  shown I n  Fig. 6-8. An arbitrary value of 

the varying parameter, K c t ,  has been se lec ted  t o  

produce the correspondhg pole -zero configurat ion 

shown i n  the same figure. 

6-2. EFFECT OF ZEROS ON TRANSIENT RESPOWE 

It ha8 been shown i n  t h e  previous sec t ion  that a caacade 

compensated system and a single-loop feedback compensated 

system may have the  same open-loop t r a n s f e r  function and the 
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saxme c h a r a c t e r i s t i c  equation, but d i f f e r e n t  zeros. I n  par- 

t i c u l a r ,  one system may have f i n i t e  zeros while the o ther  

syatem does not.  The e f f e c t  of a zero on the t r ans i en t  

response of a system has been discussed by D e l  Tom and 

Parker f o r  a second-order systemOg The results of t h i s  dls -  

cussion can be extended t o  higher-order systems providing 

these systems can be approximated by an equivalent  second-‘ 

order system over the frequency range of i n t e r e s t .  

Consider a second-order system having the normalized 

closed-loop t r a n s f e r  function - 

wn i s  the na tu ra l  frequency of the system and 6 is  the system 

damping ra t io .  The system response t o  a step-input of  mag- 

nitude rl  i s  
2 

rl wn 
2 c ( s )  =- 

9 s2 + 26wn~ + wn 
( 6-44) 

If a zero a t  - z1 Is added t o  the t r a n s f e r  funct ion of Eq. 

(6-43), the system’s response t o  the step-Input becomes 

1 + S / Z l  

(s/wnl2 + (26/wn)s + 1 

rl 
s 

c ( s )  =-e 

s + 21 

=1 
(6-45) rl wn2 

2 
= - 0  

s2 + 26wns + wn 

%Incent D e l  Tor0 and S dney R. Parker, P r inc i  l e s  of 
Control  Systems Enjxineerl [New York: McOraw- * i 
Company, Inc., 1960) t PP.npf34-5. 
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A comparison cf Eq. (6-45) and (6-44) reveals t h a t  the addi- 

t i o n  of the zero cannot a l t e r  ei ther the damping r a t i o  or 

the n a t u r a l  frequency of the  system becauee the c h a r a c t e r i s t i c  

equation of the system is unchanged. However, the presence 

of the zero may a f f ec t  the  amplitude of the t r a n s i e n t  response 

of the system, depending upon the r e l a t i v e  magnitude of zl 

compared w i t h 6 w n .  According t o  D e l  Tor0 and Parker: 

... if z1 is large compared w i t h  the  values of s 
which are predominant i n  charac te r iz ing  the t i m e  
so lu t ion  (i.e., that portion of the frequency 
spectrum up t o  w, of the preva i l ing  complex roo t s ) ,  
then the  Influence is very smll  because (s + z ) /z l  

hand, i n  those s i t ua t ions  where the magnitude of  
z 
cbmplex roots, the e f f e c t  may 

is not appreciably la rger  than uni ty .  On the o i her 

is small compared with the  Wn of the predominant 
q u i t e  s i g n i f i c a n t  

depending upon the value of 6 .  p& 
The precise  manner i n  which a zero a f f e c t s  the value of 

t he  maximum percent overshoot f o r  a system is shown in Fig. 

6-9. A s  noted by D e l  Toro and Parker, the  maximum overshoot 

is not apprec i ab ly  a f f ec t ed  by the presence of a zero when 

Example. Consider a plant w i t h  the t r a n s f e r  funct ion 

Q1 P K/s(s + 2) and the  compensation network 0, - H1 = (s + 4). 

The closed-loop t r a n s f e r  funct ion f o r  the  cascade compensated 

sys t em is 
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A comparison of Eq. (6-47) and (6-46) shows that  the damping 

r a t i o ,  6 ,  and the n a t u r a l  frequency, Wn, of the two systems 

are the same but the magnitude of the t r a n s i e n t  response w i l l  

i 

Figure 6-9. 
w i t h  a zero of C/R( s) .ll 

Variation of maximum percent overshoot 

be g r e a t e r  f o r  the cascade system because of the presence of 

the zero. A check t o  determine whether the d i f fe rence  i s  of 

s ign i f icance  i s  made by ca l cu la t ing  the funct ion Z/6Wn. The 

f a c t o r s  6 and w, are  determined by comparing the character-  

i s t i c  equation f o r  the two systems, s2 + s(2  + K) + 4K = 0, 

w i t h  the normalized form f o r  the second-order system, 

s2 + 26w,s + Wn2 3: 0 .  

( 2  + K ) / 4 g .  

It is seen t h a t  Wn = 2E and 6 = 

Calculat ing z/gwn and c a l l i n g  t h i s  expression X, 

l l I b i d  -* ' p. 435. 



Solving Eq. (6-48) for K 

IC2 + (4 - 256h2)K + 4 = 0 

- ( 4  - 256/X2) t d(4 .. 256/X2)* - 1; 
I C =  2 (6-49) 

K must be real and pos i t ive .  Therefore, from Eq. (6-49) 

(4  - 256/k2)2 2 16 

4 - 256/X2 5 -4 (6-50) 

x = Z/&Wn I4E 

Solving Eq. (6-50) f o r  X 

Since the condi t ion z/gWn 2 10 has not been met, the zero w i l l  

have an appreciable effect on the t r a n s i e n t  response of the 

cascade compensated system. The overshoot f o r  t h i s  system 

must therefore  be determined from Fig. 6-9. 

6-3 .  SUMMARY AND CONCLUSIONS 

The pole-zero configurations f o r  cascade and feedback 

compensated systems have been compared and similari t ies and 

d i f fe rences  noted. I n  pa r t i cu la r ,  for i d e n t i c a l  compensation 

networks and no pole-zero cancel la t ion,  i t  was noted tha t  the 

poles of the  closed-loop t r ane fe r  func t ion  are the same f o r  

cascade and slngle-loop feedback compensation. Also, the  

zeros of the cascade compensated system are the same as the 

zeros of the open-loop transfer function; whereas the zeros 

of the single-loop feedback compensated system a r e  the same 
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as the zeros of the plant and the poles of the compensation 

network. The zeros of the closed-loop t r a n s f e r  funct ion f o r  

the double-loop and s ingle  -loop feedback compensated systems 

are i d e n t i c a l .  It w a s  also noted that the c h a r a c t e r i s t i c  

equation for the double-loop feedback compensated system can 

be pxt h t c  three differezt rocr+--locus equation fonns that 

correspond t o  three equivalent single-loop forma of the o r ig -  

inal system and the three corresponding open-loop t r a n s f e r  

func t ions  , 

When the cornpensation network introduces pole-zero can- 

c e l l a t i o n  i n  e i t h e r  the  open-loop o r  closed-loop t r a n s f e r  

funct ions f o r  a system, the general  statements concerning the 

system pole-zero configuration must be re- interpreted.  It 

has been shown that  the effects r e s u l t i n g  from pole-zero 

cance l la t ion  when the zeros involved are i n  the p lan t  and 

the poles  Involved are in the compensation network differ 

f r o m  the e f f e c t s  when the  poles are i n  the compensation ne t -  

work and the zeros a r e  i n  the p lan t .  

The presence of zeros i n  the  closed-loop t r a n s f e r  func- 

t i o n  f o r  a system have been shown t o  Increase the maximum 

percent overshoot of the system response, The s ign i f icance  

of the increase depends upon the magnitude of the  zero corn- 

pared t o  the product of the system damping r a t i o  and n a t u r a l  

frequency ( 6wn) , 



C H A P P I S  7 

SUMARY AND CONCLUSIONS 

7-1. s a  
Ab: eta ted  i n  tae i n C ~ d u c t l ~ n ,  the obJectlve of t h i s  

thesis has been t o  analyze and compare the e f f ec t s  of cascade 

and feedback compensation upon the steady-state and dynamic 

perf ormnoe of feedback control systems. T h i s  ob3ectlve has 

been observed throughout the thesis, with s ign i f icant  results 

being summarized i n  the closing section of eaoh chapter. 

Several r e l a t i v e  merits ai cascade and feedback compem 

sa t ion  have been disclosed by the investigations I n  this  

thesis. These f ac to r s  are summarized i n  the following see- 

t ion.  Some of the analyses have not resul ted i n  conspicuous 

advantages or l imi ta t ions ,  bu t  ra ther  have Indicated the char- 

acteristic effeots of the various modes of compensation, or 

have Introduced supporting infarmation. 

revealed the problems Involved I n  synthesizing a passive feed- 

back  compensator t o  replace the  corresponding cascade compen- 

s a t o r  In a given system. S i m i l a r l y ,  Chapter 5 Introduced a 

convenient technique f o r  approximating the  magnitude of 

closed-loop transfer functions f o r  compensated systems and 

analyzed the e f f e c t s  of compensation i n  terms of t h i s  t e c b  

nique, 

of caacade and feedback compensation upon the pole-zero 

Far example, Chapter 2 

A n d  f i n a l l y ,  Chapter 6 presented the relative e f f ec t s  
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configurat ion for a given system and discussed the slgnlfi- 

cance of these effects. 

for  s e l e c t i n g  a par t i cu la r  compensation mode and compensator 

type  f o r  a given plant  and glven perf ormanee specif icat ions.  

A l l  of these r e s u l t s  provl4.e ins ight  

7-2. -vE MEElI TS OF COMPENSATION MODES 

The  r e l a t i v e  advantages and disadvantages of the various 

mode6 ai aorp.noeitlon are summarized below. The reader i n  

roferreb t o  the appropriate  ohapter for a detailed bllscueelon 

of theee polntr, 

-, The s e n s l t l v l t y  funct ion f o r  a sya- 

tern Is defined i n  Sect ion 6 of Chapter 3. The smaller the 

value of tNs funct ion,  the l e s s  the cont ro l  system output 

is affected by changes i n  a given parameter, 

func t ion  is  in general l e s s  f o r  the cascade compensated sys- 

tem for changes In the compensation network. The double-loop 

feedback compensated system offers a p o t e n t i a l  reduct ion  i n  

the s e n s i t i v i t y  funct ion for  changes i n  the plant  when com- 

pared w i t h  both the single-loop and cascade cornpensation 

cases .  Another considerat ion i n  favor of feedback compen- 

s a t i o n  I n  general is the f a c t  that It may be more p r a c t i c a l  

t o  design the feedback cornpeneator t o  give the desired output 

accuracy and s t a b i l i t y ,  regard lese  of whether or not the 

s e n s i t i v i t y  func t ion  Is l e s s  f o r  the cascade compensated sys- 

t e m .  

The s e n s i t i v i t y  
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. Same very slgnlflcant conclu- 

sions were developed i n  Chapter 4 conearnln(L the uterdy-atate 

error and 8teady-state actuating s l g M l a  for cmpenslatad my69 

tome. Far example, tkl. lnveatlgation revealed that f i n i t e  

rystem error is impossible to achieve for  ramp or higher-ahdm 

input8 Pnto 8%r@b1oap imdback ceap@nssted system, 

l la lbt loa  r e s t r i c t s  the ~ lng le - loop  myatem t o  reguhtor  s*li- 

artiaar. le suah rwtrlatian oxtiat. fa? oarasdm aad daubla, 

leap feedbrak ccrapanr8ted. r y a t e u .  Tlm stcwdpotate 8 r r Q a  

and actuating algnala are l latml in Table# 4-1, 4-2 8nd k 3  

for e8ch of the ccwpnsatlon modes and r a r l o w  Input f unctlom. 

A n  ev8lustion of those table6 r O V e m l 8  that It I s  d i f f i c u l t  t o  

umke @nor81 stateneuts concerning the relative r g n i t u d e r  cf 

the steady-mtate fw-c t lms  f m  each of the caponaat lm nodes. 

I n  fact oach of the modes af‘ compensation c8n offer reduced 

rteady-8tute aystsm errcu8 and actmting  8 I p h  far spec i f ic  

combinatlano of plants and coapenutarm. In ether wards, 

each given syetem ahcwld be analyzed independently In t e r w  

of tho analymeu of Chapter 4 and tb infaroation presented 

In the aforeraentld table.. 

This 

In mdditlan t o  the fmctws 

that have been discussed I n  the ?revlous parag’.p&s, them 

are several other considerations that should be taken into 

a c c ~ m t  when m k i r ~  Q chcice betuerm r-racade and feedback 
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1. c ompensa t I on . 

1, The design procedures for cascade compensation tend 

t o  be more direct than those for feedback compensation. 

2. Because r>f t h e  physical f o r m  of the con t rq l  system, 

a par t i cu la r  type of compensation may not be 2ossible nr a t  

least not be practical. 

3. The type of s igna l  seen by the compensator must be 

considered. 

t o r  may be more d i f f i c u l t  than a cascade compensator when the 

feedback s i g n a l  is mdulated on a carrier. 

For example, the design of a feedback com-;>ensa- 

4. Some control systems r e q u i r e  the i s o l a t i o n  of the 

dynamics of one part of the system from other parts of the 

complete system. T h i s  i s o l a t i o n  can be accomplished by Intro-  

ducing an inner feedback loop around %he part  of the system 

that requires  l sq la t ion .  

5. The sigrial normllg goes from a low t o  a high e3ergy 

l e v e l  in the forward path,  whereas the opposite I s  usually 

the case f m  the feedback path. An amplifier i s  therefore  

general ly  required for a cascade compnsator b u t  w i l l  of ten 

not  be necessary f o r  feedback compensation. Also, the capac- 

i t o r s  and other components f o r  the cascade compmsator may 

be larger and heavier than f o r  the corras:)ondlag compmente 

i n  the  feedback compensatm. 

- -.I _._ John J. D'Azzo and Constantlne Is. Houpis, Feaaoac 
Control Svstem Ammi8 and Sv F,  (New York: PlcGrakHlll 
Book Company, 1966) , pp. 465-4 7. 

i 
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APPENDIX 



- APPENDIX 

SPECIAL STEADYSTATE CONSIDERATIOMS 

FOR FEEDBACK COMPENSATED SYS- 

A - l .  A SPECIAL CASE OF A SIWm-u)oP FEEDBACK COMPENSATED 

S Y S m  (N = 1, M = 0 )  

Consider a type 1 uncompensated system 

and the feedback compensation network 

The open-loop t ransfer  function for the single-loop feedback 

compensated system of Fig. A - 1 ,  page 106, Is 

K1(1 + Sfa) 

GIHl = s(l + s4a)(l + Stb)(l + ..r,j 
K1 1 

(A-3)  

The compensation network i s  selected 80 that i ts  zero w i l l  

cancel a pole of the uncompensated system. The root  locus 

plots  for the uncompensated system and the compensated system 

are shown in Fig. A-2,  page 106. 

From Table 4-2 on page 42, the steady-etate system error 

for a s tep  Input is  



The error is  not a function of IC1. 

one by proper choice of preamplifier or a t tenuat ion  network 

i n  Eq. (A-2) ,  the  steady-state system e r r o r  is reduced t o  

zero. 

inant  roo t s  in Fig. A-2(b) i n  the proper loca t ion  f o r  the 

desired t r a n s i e n t  response. Since the system e r r o r  is inde- 

pendent of K 1 j  the  e r r o r  w i l l  no t  be a f f e c t e d  by setting the 

roots .  

If Kc & made equal t o  

Now Kl can be adjusted independently t o  place the dom- 

A -2. BLOCK -DIAGRAM MANIPULATION AND INTERPRETATION OF STEADY- 

STATE SYSTEM ERROR FOR SINGLE-LOOP FEEDBACK COMPENSA- 

TION - 
Consider the single-loop feedback compensated sys tern of 

Fig. A - 1 ,  w i t h  G1 being a type 1 o r  greater system (N 2 1) 

and H1 being type 0 ( M  = 0) , 

steady-state  system error f o r  a ramp input  i n t o  this system 

Is seen t o  be i n f i n i t e .  A t  f i rs t  thought, t h i s  r e s u l t  m i g h t  

appear t o  be incor rec t .  The f a c t  t ha t  the error is Indeed 

i n f i n i t e  may be seen by transforming the block-diagram of 

Fig. A - 1  i n t o  the equivalent form shown i n  Fig, A-3. 

From Table 4-2 on page 42, the 

Since HI is a type 0 element, i t  reduces t o  K, a+, steady 

The input function R and the  funct ion R' = R& are s t a t e .  

YlL" a h + - h n A  ").l.*-.CI. ir! Fig, A-4 i  page 108, These funct ions diverge and 

the d i f fe rence  between them approaches i n f i n i t y  as t-m. 
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Figure A-1. Single-loop feedback compensated system. 

a) Uncompensated system. b) Compensated system. 

3Lgtire A=3.  Eq~ivalent  block-diagram for a single-loop 
feedback compenaated system. 
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Since the e r r o r  is finite f o r  a ramp input  i n t o  a type 1 o r  

greater un i ty  feedback system, the e r r o r  between R '  and C is 

f i n i t e  ( i n  fact  zero f o r  N 2 2) . 
loop feedback compensated system i s  defined as R-C and is  

The e r r o r  f o r  the single- 

therefore  i n f i n i t e  f o r  steady-state conditions. 

A-3. RLOCK-DlAGRAM MANIPULATION AND INTERPRETATION OF STEADY- 

STATE SYSTISM ERROR FOR DOUBLE-LOOP FEEDBACK COMPENSA- 

The physical s lgn i f  lcance of the steady-state system 

e r r o r s  f o r  a double-loop feedback compensated system may be 

made more apparent by analyzing the system obtained by t rans-  

forming the system of Fig. A-5(a) i n t o  the equivalent un i ty  

feedback system of Fig. A-5(b). 

The inner-loop of the double-loop system has been 

replaced by i t s  t r ans fe r  funct ion Q ' ,  where 

( A - 5 )  

The steady-state system error for a uni ty  feedback system was 

developed i n  Chapter 4, Sect ion 1, and theae error8 are t a b -  

u l a t ed  i n  Table 4-1 on page 38 i n  terms of the compensated 

system t y p e  (N + M) and the order  (Or)  of the input  function. 

Referring t o  Table 4-1, the e r r o r  is seen t o  be i n f i n i t e  when 

the system type is less than the order  of the  Input func t ion  

m i m s  me; the error Is a constant when the system type 

equals the order of  the input  funct ion minus one; and the 
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Figure A - 4 .  Parameters R ,  R', and C versus t ,  
(See Figure A-3,  page 106.) 

a )  Double-loop feedback b) Equivalent unity 
compensated sys tern. feedback system. 

Figure A - 5 .  
loop feedback compensated system, 

Block-diagram transformation of a double- 
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e r r o r  I s  zero when the system type is  greater than the order 

of the input  func t ion  lainus one. 

The e r r o r  f o r  the system of Fig. A-5(b) Is a func t ion  

of the type of G 8  j u s t  as the e r r o r  f o r  the cascade compen- 

sated system I s  a function of the type of QIOc. 

fo re  necesaarg t o  cisfine the type of Q' in tenas o r  the type 

of the uncompensated system, Ql, and the feedback compensation 

element H1. 

It is them- 

Expressing Q'  In i ts  general ized form [See Eq. 

(4-30).1 

Equation (A-6) reveals that (3' is a type 0 system f o r  M 2  0. 

For negative values of M, Eq. (A-6) may be put into a more 

convenient form by multiplying the numerator and denominator 

by s IM1 .  A f t e r  t h i s  operation is perforpaed, Eq. (A-6) becomes 

, M < O  (A-7)  
KlNlD, 

0 '  = 
sND1DC + s "' KINIKcNc 

For lM/ < W, Eq. (A-7)  can be expressed as 

Therefore 6' i s  a type IMI system f o r  M < 0 and IMI N. 

Similarly, for > N, Eq. (A-7) becoaes 

Therefore Q' i s  a type N system f o r  M < 0 and 1x1 > N. 
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Relating the type of Q '  to  the system type i n  Table 4-1, 

page 38, and the steady-state system error for the double- 

loop feedback compensated system with the errors i n  Table 4-1, 

the physical significance of the restrictions on M and N for 

f i n i t e  error that were stated on pages 50 and 52 for the 

bouble-loop feedback compensated case becomes apparent. 


